ФГУП «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ» ФГУП «ВНИИМС»

УТВЕРЖДАЮ Заместитель директора пе производственной метрологии ФГУП «ВНИИМС» Н.В. Иванникова 15" октября 2019 г.

Машины координатные измерительные PRIMUS L

МЕТОДИКА ПОВЕРКИ

МП 203-55-2019

Настоящая рекомендация распространяется на машины координатные измерительные PRIMUS L (далее по тексту КИМ) и устанавливает методику ее первичной и периодической поверок.

Основной целью поверки КИМ является определение соответствия КИМ параметрам, перечисленным в таблице 1.

Значения погрешностей измерений при решении на КИМ других метрологических задач не регламентируются в нормативной и технической документации, их определение требует дополнительных исследований по специальным методикам.

Интервал между поверками -1 год.

1. ОПЕРАЦИИ И СРЕДСТВА ПОВЕРКИ

1.1. При проведении поверки должны быть выполнены операции и применены средства поверки, указанные в таблице 1.

Таблица 1

Наименование опера- ции	Номер пункта		Проведение операции при	
	методики поверки		первичной поверке	периодиче- ской поверке
Внешний осмотр	6.1	Визуально	Да	Да
Опробование	6.2	Визуально	Да	Да
Идентификация программного обеспечения	6.3		Да	Да
Проверка допускае- мой абсолютной по- грешности измери- тельной головки, мкм	6.4	Меры для поверки систем координатно-измерительных ROMER Absolute Arm: сфера без покрытия (регистрационный номер в Федеральном информационном фонде № 64593-16)	Да	Да
Проверка допускаемой абсолютной объемной погрешности контактной измерительной головки (L=длина в мм), мкм	6.5	Плоскопараллельные концевые меры длины, аттестованные по 3-му разряду согласно Государственной поверочной схеме для средств измерений длины в диапазоне от 1·10 ⁻⁹ до 100 м и длин волн в диапазоне от 0,2 до 50 мкм, утвержденной приказом Росстандарта № 2840 от 29 декабря 2018 г.	Да	Да

Примечание: Допускается применение средств, не приведенных в перечне, но обеспечивающих определение (контроль) метрологических характеристик поверяемых средств измерений с требуемой точностью.

2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки соблюдают следующие требования безопасности, а также требования, изложенные в документации на поверяемые КИМ.

- 2.1. Электронная аппаратура в части требований безопасности должна соответствовать ГОСТ 22261-94 и ГОСТ 12.2.0070-75.
- 2.2. Электронная аппаратура КИМ и поверочного оборудования должны быть заземлены и перед ними на полу должны лежать резиновые коврики, во время поверки кожухи электронной аппаратуры должны быть закрыты.
- 2.3. До включения в сеть электронной аппаратуры должны быть подключены необходимые электрические кабели. Запрещается во время поверки отсоединять их, а также производить замену предохранителей.
 - 2.4. Установленные предохранители должны соответствовать маркировке на панелях.
- 2.5. Запрещается вскрывать и переставлять составные части КИМ и поверочного оборудования при включенных в сеть кабелях питания.

3. УСЛОВИЯ ПОВЕРКИ

При проведении поверки КИМ соблюдают следующие условия:

- температура окружающей среды °С......20±2,
- - допускаемое изменение температуры во время измерений . 0 С/час......± 1 °С/ч; 1,5 °С/24ч;

не допускается прямое попадание солнца, близкое расположение источников тепла

- относительная влажность воздуха %, не более70 без конденсата
- внешние вибрации в соответствии с требованиями к условиям эксплуатации КИМ.

4. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки КИМ допускаются лица, изучившие эксплуатационные документы на них, имеющие достаточные знания и опыт работы с ними и аттестованные в качестве поверителя органом Государственной метрологической службы.

5. ПОДГОТОВКА К ПОВЕРКЕ

Перед проведением поверки выполняют следующие подготовительные работы:

- КИМ подготавливают к работе в соответствии с требованиями эксплуатационной документации,
- измерительные поверхности эталонных (образцовых) средств измерений: измерительных щупов, концевых мер длины, калибровочной сферы очищают от смазки, промывают авиационным бензином марки Б-70 по ГОСТ 1012-72 и спиртом ректификатом по ГОСТ 18300-72 и протирают чистой салфеткой,
- эталонные (образцовые) средства выдерживают до начала измерений в помещении, где проводят поверку КИМ в течение 24 часов и 1 час в рабочем (измерительном) объеме КИМ.

6. ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр

При внешнем осмотре по п. 6.1. (далее нумерация согласно таблице 1) устанавливают соответствие КИМ следующим требованиям:

- наружные поверхности КИМ не должны иметь дефектов, влияющих на ее эксплуатационные характеристики;
- на рабочих поверхностях КИМ не должно быть царапин, забоин и других дефектов, влияющих на плавность перемещений подвижных узлов КИМ;
 - наконечники щупов не должны иметь сколов, царапин и других дефектов;
- маркировка и комплектность должны соответствовать требованиям технической документации.

6.2 Опробование

Сначала проверяют взаимодействие частей на холостом ходу перемещением подвижных узлов на полные диапазоны. Перемещения должны быть плавными, без посторонних звуков, заеданий, рывков и скачков.

6.3 Идентификация программного обеспечения

Проверить идентификацию программного обеспечения (ПО) по следующей методике:

-произвести запуск ПО;

-проверить наименование программного обеспечения и определить его версию после загрузки ПО. Сведения о наименовании программного обеспечения и номере версии ПО представлены на экране в течение одной секунды после нажатия иконки программы на рабочем столе компьютера.

Приборы считаются поверенными, если их ПО соответствует данным в таблице 2.

Таблица 2- Идентификационные данные программного обеспечения

Идентификационные данные (признаки)		Значение	
Идентификационное наименование ПО	Inca3D	Modus	PolyWorks
Номер версии (идентификационный номер) ПО	6.0.хх и выше	1.0 и выше	2019хх и выше
Цифровой идентификатор ПО		•	

6.4 Проверка допускаемой абсолютной погрешности измерительной головки

Сфера устанавливается на плите КИМ с помощью стойки. Проводятся 3 цикла измерений в автоматическом режиме. В каждом цикле производятся измерения поверхности сферы в 25 дискретных точках, равномерно размещенных по полусфере на измеряемой сфере.

Рекомендуемая модель измерений включает:

- одну точку на вершине сферы;
- четыре точки, (равномерно распределенных) на 22° ниже вершины (рис. 1);
- восемь точек (равномерно распределенных) на 45° ниже вершины и повернутых на 22,5° относительно предыдущей группы;
- четыре точки (равномерно расположенных) на 68° ниже вершины и повернутых на 22,5° относительно предшествующей группы.

- восемь точек (равномерно расположенных) на 90° ниже вершины, т.е. на диаметре и повернутых относительно предыдущей группы на 22,5°.

Рисунок 1. Точки касания на сфере для определения допускаемой абсолютной погрешности измерительной головки

Погрешность определяется как сумма максимальных отклонений измеренного профиля в положительную и отрицательную области от средней сферы, рассчитанной по методу наименьших квадратов:

$$Δor = max(Di+) + max(Di-),$$
_{MM, ΓДе}

 D_{i+} - отклонение точки i от средней сферы в положительную область,

 D_{i-} - отклонение точки і от средней сферы в отрицательную область.

Погрешность ощупывающей головки не должна превышать значения, указанного в таблице 3.

Таблица 3 – Пределы допускаемой абсолютной объемной погрешности измерительных головок

	Пределы допускаемой абсолютной			
	объемной погрешности измерительных головок, мкм			
Модификация	PH10M plus с контактным датчиком TP20	PH10M plus с контактным датчиком TP200 и REVO с контактным датчиком RSP2	PH10M plus с контактным датчиком SP25 и REVO с контактным датчиком RSP3	
121510	±2,3	±2,1	±1,9	
122010				
122510				
152010	±2,5			
152510		±2,3	±2,0	
153010				
152012	±2,9			
152512		12.6	12.2	
153012		±2,6	±2,3	
153512			,	
153014	±3,3	±2,9	±2,6	

153514			,
152515	±3,5	.2.1	120
153015		±3,1	±2,9
153016	±3,7	12.2	12.0
154016		±3,3	±3,0
183010	±2,8	±2,4	±2,1
183510		±2,4	±2,1
182012	±3,2		
183012		±2,9	±2,6
183512			1-1
183014	±3,6	±3,2	±2,9
183514		±3,2	±2,9

6.5 Проверка допускаемой абсолютной объемной погрешности контактной измерительной головки (L- измеряемая длина в мм), мкм

При поверке используют меры длины концевые плоскопараллельные 3-го разряда согласно Государственной поверочной схеме для средств измерений длины в диапазоне от $1 \cdot 10^{-9}$ до 100 м и длин волн в диапазоне от 0,2 до 50 мкм, утвержденной приказом Росстандарта № 2840 от 29 декабря 2018 г. из набора номиналом от 50 до 1000 мм в соответствии с диапазоном измерений поверяемой модификации.

Концевые меры устанавливают в пространстве измерений КИМ вдоль линии измерений. При установке мер необходимо применять теплоизолирующие перчатки. Обязательно осуществляется компенсация погрешностей, связанных с отклонениями параметров окружающей среды, отличающихся от нормальных. Производится сбор точек с измерительных поверхностей концевых мер и определяется их длина. Измерения проводят в четырех различных положениях (рис.2), каждое измерение повторяется 5 - 10 раз. Для измерений вдоль осей X и Y рекомендуется использовать следующие положения:

Для линий, параллельных оси X, рекомендуются следующие положения:

- в центре рабочей зоны,
- на краю рабочей зоны на минимально возможной высоте от плоскости стола,
- на краю рабочей зоны на максимальной возможной высоте от плоскости стола.
 Для линий, параллельных оси Y, рекомендуются следующие положения:
- в центре рабочей зоны в максимально возможном верхнем положении,
- в центре рабочей зоны в максимально возможном нижнем положении. Измерения должны проводиться в автоматическом режиме.

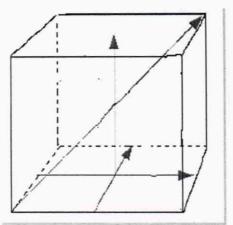


Рисунок 2. Типичные положения, в которых производят измерения в пределах объема КИМ

Для меры номер j определяется действительное значение длины измеряемой меры, $L_{\text{Д<math>i}ki}$ по формуле:

 $L_{IJjki} = L_{oj} \left(1 + K_t \left(t_{IJjki} - t_{\cdot \cdot} \right) \right)$, где

 L_{oj} – номинальная длина меры при температуре t_0 =20,5°C,

 $t_{\text{Дjki}}$ – температура меры при проведении измерения номер і меры ј в положении k, t_0 - температура, при которой аттестована КМД,

K₁- интегральный коэффициент теплового расширения КМД.

Далее для каждого измеряемого отрезка ј в положении k вычисляется погрешность измерения длины, ΔL_{jk} , по формуле:

$$\Delta L_{jk} = rac{\displaystyle\sum_{i=1}^{n} \left(L_{jki} - L_{Jljki}
ight)}{n}$$
 мм, где

 L_{jk} - погрешность измерения меры номер j в положении k,

L_{ікі}- измеренная на КИМ длина меры номер ј в мм,

L_{дікі}- действительная длина меры номер j с учетом температурной погрешности,

і – номер измерения,

ј – номер меры,

n - число измерений в положении k,

k - номер положения.

По результатам измерений с использованием мер для наглядности можно построить график пространственной погрешности измерений ΔL_{jk} :

по оси абсцисс откладывается значение L_{oj} в мм, по оси ординат – погрешность $\Delta L_{ik}.$

Строятся графики пространственной погрешности измерений КИМ, представляющие собой прямые линии, построенные по формуле:

$$\Delta L = \left(A + \frac{L}{B}\right)$$
, мкм, где

А и В- заявленные значения постоянной и переменной части составляющих пространственной погрешности измерений для каждого типоразмера машины;

L – измеряемая длина, мм

Значения абсолютной погрешности объемных измерений не должны превышать значений, указанных в таблице 4.

Таблица 4 – Пределы допускаемой абсолютной объемной погрешности

Таолица	4 — Пределы допускаемой абсолютной объемной погрешности Пределы допускаемой абсолютной объемной погрешности с			
	измерительными головками (где L- измеряемая длина, мм), мкм			
Модификация	PH10M plus c	PH10M plus с контактным	PH10M plus с контактным	
	контактным	датчиком ТР200 и REVO с	датчиком SP25 и REVO с	
	датчиком ТР20	контактным датчиком RSP2	контактным датчиком RSP3	
121510				
122010	±(2,3+L/300)	$\pm (2,1+L/300)$	±(1,9+L/300)	
122510				
152010				
152510	±(2,5+L/300)	±(2,3+L/300) ±(2,0-	±(2,0+L/300)	
153010				
152012	1/2 0 11 /200			
152512		1(2 611 /200)	1/2 2 LT /200)	
153012	±(2,9+L/300)	±(2,6+L/300) ±	±(2,3+L/300)	
153512			*	
153014	±(3,3+L/300)	+ (2 0 + I /200)	1/2 (11/200)	
153514		$\pm(2,9+L/300)$	±(2,6+L/300)	
152515	. (2.5.1.(200)	L(2.1 LT /200)	1/2 0 LT /200)	
153015	±(3,5+L/300)	$\pm (3,1+L/300)$	±(2,9+L/300)	
153016	. (2.7.1.(200)	+(2 2+1 /200)	1/2 0 LT /200)	
154016	±(3,7+L/300)	$\pm(3,3+L/300)$	±(3,0+L/300)	
183010	+(2.8+1./200)	+(2 4+I /200)	+(2.1+I./200)	
183510	±(2,8+L/300)	±(2,4+L/300)	±(2,1+L/300)	
182012			200	
183012	±(3,2+L/300)	±(2,9+L/300)	±(2,6+L/300)	
183512				
183014	+(3.6+1./200)	+(2 2+1 /200)	1/2 017 /200	
183514	±(3,6+L/300)	±(3,2+L/300)	±(2,9+L/300)	

7. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1. При положительных результатах поверки оформляется свидетельство о поверке по форме приложения 1 Приказа Минпромторга России № 1815 от 02.07.15г.
- 7.2. При отрицательных результатах поверки оформляется извещение о непригодности по форме приложения 2 Приказа Минпромторга России № 1815 от 02.07.2015г.

Знак поверки в виде оттиска клейма поверителя наносится на свидетельство о поверке. Знак в виде голографической наклейки наносится свидетельство о поверке.

Заместитель начальника отдела 203 ФГУП «ВНИИМС» Н.А. Табачникова

Зур 2 - ве

Н. А. Зуйкова

Ведущий инженер отдела 203 Испытательного центра ФГУП «ВНИИМС»