ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерительная для стендовых испытаний узлов и агрегатов вертолетов СИСТ-63

Назначение средства измерений

Система измерительная для стендовых испытаний узлов и агрегатов вертолетов СИСТ-63 (далее – система) предназначена для измерений крутящего момента силы, частоты вращения, силы и коэффициентов рассогласования тензомостов и формирования на основе полученных данных дискретных сигналов управления сложными технологическими процессами и объектами, а также для регистрации и отображения результатов измерений и расчетных величин.

Описание средства измерений

Функционально система состоит из измерительных каналов (ИК):

- ИК крутящего момента силы;
- ИК частоты вращения;
- ИК силы;
- ИК аналоговых сигналов от тензодатчиков.

ИК системы состоят из:

- а) первичных измерительных преобразователей (ПИП):
- датчик крутящего момента силы БИКМ-М-106М-20000-3, регистрационный номер средства измерений в Федеральном информационном фонде (рег. №) 58082-14;
 - датчик тахометрический МЭД-1, рег. № 64257-16;
 - датчик силы U2B, per. № 64341-16;
- б) вторичной электрической части ИК (ВИК), которая представляет собой стойку управления с размещенными в ней многоканальным измерительным усилителем MGCplus (далее усилитель MGCplus), консолью управления, источником бесперебойного питания и ПЭВМ, внутри которой смонтирован аналого-цифровой преобразователь (АЦП).

Принцип действия ИК крутящего момента силы основан на аналогово-цифровом преобразовании аналогового сигнала (сила постоянного тока) от датчика в цифровой код с последующим вычислением на ПЭВМ значений измеряемых сигналов по известной градуировочной характеристике ИК. Результаты измерений индицируются на монитор, архивируются и оформляются в виде протоколов.

Принцип действия ИК частоты вращения основан на аналогово-цифровом преобразовании импульсного сигнала (частота переменного напряжения) от датчика тахометрического в цифровой код с последующим вычислением на ПЭВМ значений измеряемых сигналов по известной градуировочной характеристике ИК. Результаты измерений индицируются на монитор, архивируются и оформляются в виде протоколов.

Принцип действия ИК силы основан на аналогово-цифровом преобразовании аналогового сигнала (напряжение постоянного тока) от датчика силы в цифровой код с последующим вычислением на ПЭВМ значений измеряемых сигналов по известной градуировочной характеристике ИК. Результаты измерений индицируются на монитор, архивируются и оформляются в виде протоколов.

Принцип действия ИК аналоговых сигналов от тензодатчиков (одиночных и подключенных по полумостовой и мостовой схемам) основан на аналогово-цифровом преобразовании аналогового сигнала в цифровой код с последующим вычислением на ПЭВМ значений измеряемых сигналов по известной градуировочной характеристике ИК. Результаты измерений индицируются на монитор, архивируются и оформляются в виде протоколов. Тензодатчики не входят в состав системы.

Система СИСТ-63 изготавливается для эксплуатации в общеклиматических условиях, исполнение О4.1 по ГОСТ 15150-69 с диапазоном рабочих температур от плюс 10 до плюс 30 °С, относительной влажностью воздуха до 80 % при температуре плюс 25 °С, без предъявления требований к механическим воздействиям, пониженной влажности, изменению температуры среды и предназначена для эксплуатации в помещениях, не содержащих химически активных сред.

Общий вид стойки управления приведен на рисунке 1.

Место нанесения знака утверждения типа

Рисунок 1 – Общий вид стойки управления

Рисунок 2 – Общий вид латчика силы U2B

Рисунок 3 – Общий вид датчика тахометрического МЭД-1

Рисунок 4 – Общий вид датчика крутящего момента силы БИКМ М-106М-20000-3

Пломбирование системы СИСТ-63 не предусмотрено.

Программное обеспечение

Работа системы осуществляется под управлением специализированного программного обеспечения (СПО) Garis (Гарис) в среде операционной системы «MS Windows» и обеспечивающего циклический сбор измерительной информации от ИК системы; расшифровку полученной информации и приведение ее к виду, удобному для дальнейшего использования; визуализацию результатов измерений в цифровом и графическом представлении; обеспечение режимов градуировки и тестирования (поверки) ИК системы. Для работы с системой СПО Гарис использует библиотеки, выполняющие следующие функции:

- модуль GarisGrad.dll фильтрация, градуировочные расчеты;
- модуль GarisAspf.dll вычисление амплитуды, статики, фазы, частоты и других интегральных параметров сигнала;
 - модуль GarisInterpreter.dll интерпретатор формул для вычисляемых каналов.

Метрологические характеристики системы (таблица 2) нормированы с учетом влияния СПО Гарис.

Уровень защиты от непреднамеренных и преднамеренных изменений «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 - Идентификационные данные программного обеспечения

таолица т - идентификационные данные программного обеспечения				
Идентификационные данные (признаки)	Значение			
Идентификационное наименование ПО	GarisGrad.dll	GarisAspf.dll	GarisInterpreter.dll	
Номер версии (идентификационный номер) ПО	Не ниже 0.0.0.147	Не ниже 0.0.0.147	Не ниже 0.0.0.148	
Цифровой идентификатор ПО	1f4635a21a99f1273dff5 e796bee6ff9	194871dff7167e722032 913377f6a8a0	1b81ee91d1a68a1b6f6f 04c06b434198	
Алгоритм вычисления цифрового идентификатора	MD5	MD5	MD5	

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики системы

	Коли-	Диапазон	Диапазон		ПИП	I	ВИК	Характеристики
Ізмеряемая величина	чество ИК	измерений (ДИ)	показаний	Тип	Выходной сигнал	Характеристик и погрешности	Характеристики погрешности	погрешности ИК
Крутящий момент силы	1	от 1 до 20000 Н·м	от 0 до 20000 Н·м	БИКМ- М- 106М- 20000-3	от 4 до 20 мА	$\gamma=\pm0.2~\%$ от ВП	$\gamma = \pm 0.3~\%$ в поддиапазоне от 1 до 10000 Н·м включ. $\Delta = \pm (0.005 \cdot \text{X} - 40)$ Н·м в поддиапазоне св. 10000 до 20000 Н·м	$\gamma=\pm0,5~\%$ в поддиапазоне от 1 до 10000 Н·м включ. $\delta=\pm0,5~\%$ в поддиапазоне св. 10000 до 20000 Н·м
Частота вращения	1	от 10 до 900 об/мин	от 10 до 900 об/мин	МЭД-1	от 20 до 1800 Гц	δ = ±0,1 %	$\delta = \pm 1,4~\%$ в диапазоне от 10 до 60 об/мин включ. $\delta = \pm 0,4~\%$ в диапазоне св. 60 до 900 об/мин	$\delta=\pm 1,5~\%$ в диапазоне от 10 до 60 об/мин включ. $\delta=\pm 0,5~\%$ в диапазоне св. 60 до 900 об/мин
Сила	1	от 10 до 20000 Н	от 0 до 20000 Н	U2B	от 0,0 до 2,0 мВ/В	$\gamma = \pm 0.2~\%$ от ВП	$\gamma = \pm 0,3$ % в поддиапазоне от 10 до 10000 Н включ. $\Delta = \pm (0,005\cdot \text{X} - 40) \text{ H в}$ поддиапазоне св. 10000 до 20000 Н	$\gamma=\pm0.5~\%$ в поддиапазоне от 10 до 10000 H включ. $\delta=\pm0.5~\%$ в поддиапазоне св. 10000 до 20000 H
Аналоговый сигнал от тензодатчиков	8	от -10 до +10 мВ/В	от -10 до +10 мВ/В	-	-	-	$\delta = \pm 0.5$ %	δ = ±0,5 %

Примечания:

- γ пределы допускаемой приведенной погрешности, нормированные от разницы между верхней и нижней границами ДИ;
- Δ пределы допускаемой абсолютной погрешности;
- δ пределы допускаемой относительной погрешности;
- ВП верхняя граница диапазона измерений;
- Х текущее измеренное значение.

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Рабочие условия эксплуатации:	
- температура окружающего воздуха, °С	от +10 до +30
- относительная влажность воздуха при температуре 25°C, %	от 30 до 80
- атмосферное давление, гПа	от 973 до 1046
Параметры электрического питания:	
- напряжение переменного тока, В	220±22
- частота переменного тока, Гц	50±1
Максимальная потребляемая мощность, ВжА, не более	500

Таблица 4 – Массогабаритные характеристики компонентов системы

Компонент системы	Габаритные размеры мм, не более			Масса, кг,
ROMHOHEHI CHETEMBI	длина	ширина	высота	не более
Стойка управления	600	600	1450	145,0
Датчик крутящего момента силы БИКМ				
M-106M-20000-3				
Ротор	280	280	1350	58
Статор	80	65	35	0,1
Блок обработки	195	135	60	0,4
Датчик тахометрический МЭД-1	14	14	55	0,3
Датчик силы U2B	100	120	150	1,0

Знак утверждения типа

наносится на стойку управления в виде наклейки в соответствии с рисунком 1 и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 5 – Комплектность средства измерений

Наименование	Обозначение	Количество
Стойка управления в том числе:	CT1607.30.00.000	1
Датчик крутящего момента силы	БИКМ М-106М-20000-3	1
Датчик тахометрический	МЭД-1	1
Датчик силы	U2B	1
Комплект кабелей измерительных Кабель для поверки ДР и IU Кабель для поверки ДМ Кабель для поверки ИК силы	CT720.00.13.000 CT720.00.15.000 CT760.00.13.000	1
Программное обеспечение	Гарис	1
Формуляр	СТ630.20.00.000 ФО	1
Руководство по эксплуатации	СТ630.20.00.000 РЭ	1
Методика поверки	СТ630-019.01 МП	1

Поверка

осуществляется по документу СТ630-019.01 МП «Система измерительная для стендовых испытаний узлов и агрегатов вертолетов СИСТ-63. Методика поверки», утвержденному Φ ГУП «ВНИИМС» 30.08.2019 г.

Основные средства поверки:

- калибратор-измеритель стандартных сигналов АКИП-7301, рег. № 36814-08;
- калибратор К3607, рег. № 41526-15;
- генератор сигналов специальной формы ГСС-05, рег. № 30405-05;
- средства поверки в соответствии с нормативными документами на поверку ПИП, входящих в состав системы.

Допускается применение иных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к системе измерительной для стендовых испытаний узлов и агрегатов вертолетов СИСТ-63

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия

Изготовитель

Общество с ограниченной ответственностью «ПКЦ Системы ТРИАЛ»

(ООО «ПКЦ Системы ТРИАЛ»)

ИНН 7728304494

Юридический адрес: 117465, г. Москва, ул. Генерала Тюленева, д. 29A Адрес: 140004, Московская обл., г.о. Люберцы, Октябрьский проспект, д. 411

Телефон: (495) 557-90-80 Факс: (495) 557-32-30

E-mail: trialsystems@rambler.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46

Телефон: (495) 437-55-77 Факс: (495) 437-56-66 E-mail: office@vniims.ru Web-сайт: www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 29.03.2018 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п.	«	>>	2020 ı
171.11.	"	//	2020