ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Установки газораздаточные природного газа ESP

Назначение средства измерений

Установки газораздаточные природного газа ESP (далее – установка) предназначены для измерений массы сжатого природного газа (метан) при выдаче его в топливные баки транспортных средств на автогазозаправочных станциях или в составе модулей компримированного природного газа с учетом требований учетно-расчетных операций.

Описание средства измерений

Принцип действия установок состоит в следующем: газ из накопителя (блока аккумуляторов) автомобильной газонаполнительной компрессорной станции (АГНКС) подводится к приёмному патрубку установок и далее через фильтр, электромагнитный клапан и клапан регулировки давления (преобразователь давления) поступает в счётчик-расходомер массовый (далее — счётчик-расходомер), затем через разрывную муфту и раздаточный шланг с краном поступает в баллоны транспортного средства.

Принцип работы счётчиков-расходомеров основан на использовании сил Кориолиса, возникающих в колебательной системе, величина которых зависит от массы газа и скорости её движения. Сила Кориолиса создаёт момент, пропорциональный массовому расходу газа, под влиянием колебательного воздействия, изгибающего трубку, по которой поступательно движется измеряемый газ.

Результаты измерения от счётчика-расходомера поступают в контроллер с дисплеем СРТН02 установок, и после обработки на цифровом табло индицируется количество (масса) отпущенного газа, цена за один кг, и его стоимость.

Для оптимизации использования блока аккумуляторов АГНКС, установки могут подключаться через клапана, к одной, двум или трем питающим линиям.

Установки оснащены манометром для контроля давления газа на выходе перед раздаточным шлангом.

Задание дозы газа и включение установок производит оператор на пульте, находящемся непосредственно на установке.

Установка нулевых показаний на цифровом дисплее разового учета выданной массы газа и стоимости производится после снятия струбцины с раздаточным шлангом с посадочного места на установке и поворота переключателя «СТАРТ - СТОП» в положение «СТОП».

Основными элементами установок являются:

- рама или рама с корпусом;
- счётчик-расходомер массовый Micro Motion, модификации CNG050 с преобразователем 1700, производства фирм «Emerson Process Management/ Micro Motion Inc.», США, «Emerson Process Management Flow BV», Нидерланды, «Technologias de Flujo», Мексика, и «Emerson Process Management Flow Technologies», Китай (регистрационный номер 45115-16 в Федеральном информационном фонде по обеспечению единства измерений (далее регистрационный номер);
 - контроллер СРТН02 с дисплеем, изготовитель «Coptron Soc. Coop. A.P.L.», Италия;
- электромагнитный клапан 8590178, изготовитель IMI BUSCHJOST GmbH (NORGREN), Германия, или пневматический 6519, изготовитель Bürkert Werke GmbH & Co. KG, Германия;
 - датчик давления E-10, изготовитель фирма WIKA, Германия;
- манометр для контроля давления, модели 213.53 или 233.50, 0/400 bar-CNG, WIKA, Германия;
 - фильтр CNG;
 - раздаточный шланг со струбциной.

Для обеспечения условий работы контроллера в зимний период, установки имеют электрический нагреватель во взрывобезопасном исполнении CREx02031, производства фирмы STEGO France SAS, Франция, для внутреннего объема установок, а также теплоизоляцию внутренних стенок установок из минеральной ваты.

Установки безопасны для окружающей среды.

Установки выпускаются с одним или двумя раздаточными шлангами. Установки с двумя раздаточными шлангами имеют два самостоятельных измерительных канала.

Установки при заказе имеют следующее обозначение:

ESPx xx/x,

где ESP- тип установки;

первый х – модификация установки:

- при его отсутствии отдельно стоящая установка с рамой и корпусом;
- і модификация установки без корпуса, позволяет применять их в составе модулей компримированного природного газа;
- Н высокопроизводительная модификация отдельно стоящей установки с рамой и корпусом;
- Hi высокопроизводительная модификация установки без корпуса, позволяет применять их в составе модулей компримированного природного газа;

второй и третий х:

- 11 установка однопостовая, с одним раздаточным шлангом;
- 22 установка двухпостовая, с двумя раздаточными шлангами;

четвертый х - количество подключаемых питающих линий (1, 2, 3).

Общий вид модификаций установок показан на рисунках 1.

В установках предусмотрено опломбирование счётчика-расходомера массового Micro Motion, модификации CNG050, и защитной крышки контроллера CPTH02, схемы пломбирования представлены на рисунках 2 и 3 соответственно.

Модификации ESP и ESPH

Модификации ESPi и ESPHi

Рисунок 1 - Общий вид модификаций установок

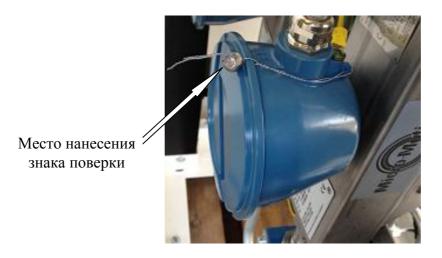
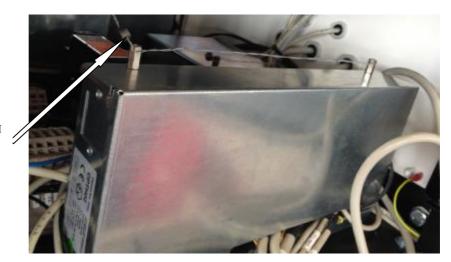



Рисунок 2 - Схема пломбировки расходомера массового CNG 050

Место нанесения знака поверки

Рисунок 3 - Схема пломбировки крышки контроллера СРТН02

Программное обеспечение

Программное обеспечение (ПО) установок является встроенным, разделения на метрологически значимое и метрологически незначимое ПО нет. ПО имеет функции управления расходом газа, определения массы выданного газа, вывода информации о массе и стоимости выданного газа на дисплей и через интерфейсы связи, сохранения во внутренней памяти количества выданных доз, количества изменений цены газа, количества и характер отказов, и реализовано в микроконтроллере, размещенном в контроллере установки.

Конструкция установок обеспечивает полное ограничение доступа к метрологически значимой части ПО и измерительной информации, а именно в установках имеется механическая защита и отсутствие программно-аппаратных интерфейсов связи. Конструкция установок исключает возможность несанкционированного влияния на ПО СИ и измерительную информацию.

Доступ к микроконтроллеру и его интерфейсу для загрузки ПО ограничивается корпусом контроллера и защитной крышкой, которая пломбируется.

ПО не может быть модифицировано, считано или загружено через какой-либо другой интерфейс после опломбирования.

Конструкция установок обеспечивает полное ограничение доступа к метрологической части ПО и измерительной информации.

Уровень защиты ПО и измерительной информации от преднамеренных и непреднамеренных изменений в соответствии с Р 50.2.077-2014 – «высокий».

Идентификационные данные ПО приведены в таблице 1.

Таблица 1

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	CPtH02
Номер версии (идентификационный номер) ПО	1.21
Цифровой идентификатор (контрольная сумма)	
метрологически значимой части ПО	0E7d
Алгоритм вычисления цифрового идентификатора ПО	CRC-32

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

Наименование характеристики	Значение
Максимальный расход, кг/мин:	
- модификаций ESP и ESPi	25
- модификации ESPH и ESPHi	100
Минимальный расход, кг/мин	0,3
Минимальная доза выдачи, кг	2
Пределы допускаемой относительной погрешности измерений	
массы сжатого газа, %	±1,0
Сходимость измерений, %, не более	1

Таблица 3 – Основные технические характеристики

1 аолица 3 – Основные технические характеристики	
Наименование характеристики	Значение
Верхний предел показаний счётчика разового учёта:	
- массы отпущенной дозы, кг	99999,99
- цены за 1 кг, руб.	9999,99
- стоимости отпущенной дозы, руб.	99999,99
Верхний предел показаний счетчика суммарного учета, кг	$(1\cdot10^{20}-1)$
Дискретность отсчета счетчика разового учета:	
- массы отпущенной дозы, кг	0,01
- цены за 1 кг, руб.	0,01
- стоимости отпущенной дозы, руб.	0,01
Максимальное рабочее давление, МПа	25
Параметры электропитания от сети переменного тока:	
- напряжение, В	от 187 до 242
- частота, Гц	50±1
Потребляемая мощность, В А, не более	140
Длина раздаточного шланга, м, не менее	4
Количество раздаточных шлангов, шт., не более	2
Рабочие условия эксплуатации:	
- относительная влажность окружающего воздуха, %	от 30 до 100 при 25 °C
- температура окружающего воздуха, °С	от -40 до +40
Маркировка взрывозащиты	II Gc c IIA T3 X

Габаритные размеры и масса исполнений установок представлены в таблице 4.

Таблица 4 - Габаритные размеры и масса исполнений установок

Исполнение	Габаритные размеры	Macca,
Исполнение	$(Д \times Ш \times B)$, мм	кг, не более
ESP 11/1; ESP 11/2; ESP 11/3	1150 x 670 x 2800	220
ESP 22/1; ESP 22/2; ESP 22/3	1150 x 670 x 2800	280
ESPi 11/1; ESPi 11/2; ESPi 11/3	810 x 670 x 1150	135
ESPi 22/1; ESPi 22/2; ESPi 22/3	810 x 670 x 1150	205
ESPH 11/1; ESPH 11/2; ESPH 11/3	1150 x 670 x 2800	240
ESPH 22/1; ESPH 22/2; ESPH 22/3	1150 x 670 x 2800	300
ESPHi 11/1; ESPHi 11/2; ESPHi 11/3	810 x 670 x 1150	155
ESPHi 22/1; ESPHi 22/2; ESPHi 22/3	810 x 670 x 1150	225

Знак утверждения типа

наносится на маркировочную табличку установки электрохимическим методом и на титульный лист эксплуатационной документации типографским способом.

Комплектность средства измерений

Таблица 5 – Комплектность средства измерений

Наименование	Обозначение	Количество
Установка (исполнение по заказу)	ESP	1 шт.
Эксплуатационная документация	-	1 компл.
Методика поверки	МЦКЛ.0284.МП	1 экз. при групповой
		поставке
Запасные части	-	По заказу

Поверка

осуществляется по документу МЦКЛ.0284.МП «ГСИ. Инструкция. Установки газораздаточные природного газа ESP. Методика поверки», утвержденному ЗАО КИП «МЦЭ» 21.10.2019 г.

Основные средства поверки:

- весы неавтоматического действия по ГОСТ OIML R 76-1-2011, с максимальной нагрузкой достаточной для взвешивания баллона высокого давления с газом и с погрешностью измерения массы газа не более $\pm 0.3\%$, при измерениях массы свыше 2 кг.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство, измерители объема, датчики импульсов, крышки электронно-вычислительных устройств и счетчика суммарного учета, как показано на рисунках 2 - 3.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к установкам газораздаточным природного газа ESP

Приказ Минпромторга России от 18.06.2017 г. №2321 Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений и производимых при осуществлении торговли, выполнении работ по расфасовке товаров, и обязательных метрологических требований к ним, в том числе показателей точности измерений

Техническая документация фирмы «SAFE S.p.A.»

Изготовитель

Фирма «SAFE S.p.A.», Италия

Адрес: Via Lamborghini n 18, 40017 San Giovanni in Persiceto Bologna, Italy

Телефон (факс): +39 (051) 687-82-11, +39 (051) 687-82-61

E-mail: <u>info@safegas.it</u> Web-сайт: <u>www.safegas.it</u>

Испытательный центр

Закрытое акционерное общество Консалтинго-инжиниринговое предприятие

«Метрологический центр энергоресурсов»

Адрес: 125424, г. Москва, Волоколамское шоссе, д. 88, стр. 8

Телефон (факс): +7 (495) 491-78-12

E-mail: sittek@mail.ru

Аттестат аккредитации ЗАО КИП «МЦЭ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311313 от 09.10.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. « ___ » _____2020 г.