ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Микроомметры серии ТМС

Назначение средства измерений

Микроомметры серии ТМС (далее по тексту – микроомметры) предназначены для измерений электрического сопротивления постоянному току.

Описание средства измерений

Принцип действия микроомметров заключается в преобразовании входного аналогового сигнала с помощью быстродействующего аналого-цифрового преобразователя, последующей математической обработке измеренных значений в зависимости от алгоритма расчета измеряемого параметра и отображении результатов измерений на цветном жидкокристаллическом дисплее.

Микроомметры выпускаются в следующих модификациях ТМС-650, ТМС-6500, ТМС-6700, отличающихся режимами работы, алгоритмами расчета измеряемого параметра, возможностью подключения температурных датчиков ST-1 и ST-3 для измерения температуры окружающего воздуха и поверхностей, а также диапазонами измерений электрического сопротивления постоянному току и измерительным током. Отличительные особенности микроомметров различных модификаций приведены в таблице 1.

Таблица 1 – Отличительные особенности микроомметров различных модификаций

Two may 1 o min mit will be o to o thing the man poem of post million modify made in				
Наименование модификации	Режимы работы	Алгоритмы расчета измеряемого параметра	Возможность подключения температурных датчиков	Измерительный ток
TMC-650	«резистивный», «индуктивный»	«стандартный», «быстрый»	ST-1 и ST-3	до 10 А
TMC-6500	«резистивный», «индуктивный»	«стандартный», «быстрый»	ST-1 и ST-3	до 100 А
TMC-6700	«резистивный», «индуктивный»	«стандартный», «быстрый»	ST-1 и ST-3	до 200 А

Микроомметры представляют собой многофункциональные измерительные приборы, конструктивно выполненные во влагостойком защитном корпусе. На передней панели микроомметров расположены:

- разъем для подключения сетевого кабеля электропитания;
- однополюсные гнезда для подключения соединительных проводов;
- разъем для подключения температурных зондов;
- цветной жидкокристаллический цифровой дисплей с сенсорным управлением;
- клавиши включения питания и запуска измерения;
- разъем RJ45 для управления измерителем из локальной сети (функционал активируется в рамках дополнительного заказа);
- USB разъемы. Тип A для подключения: сканера штрих-кода; мобильного принтера этикеток; флэш-накопителя. Тип B для подключения персонального компьютера;
 - отсек для установки аккумуляторной батареи (для модификации ТМС-650).

Питание микроомметров обеспечивается съемной для модификации TMC-650 (встроенной для модификаций TMC-6500, TMC-6700) литий-ионной аккумуляторной батареей 7,2 В SONEL-27 с возможностью подзарядки, или от сети электропитания.

Микроомметры имеют следующие функциональные возможности:

- автоматический выбор диапазона измерений;
- автоматическое выключение неиспользуемого измерителя (функция AUTO-OFF);

- хранение результатов измерений и способность передать сохраненные данные в компьютер;
 - сигнализацию разряда элементов питания.

Общий вид микроомметров, место нанесения знака поверки и место пломбирования представлены на рисунках 1-3.

Рисунок 1 – Общий вид микроомметров модификации ТМС-650, место нанесения знака поверки и место пломбирования

Рисунок 2 — Общий вид микроомметров модификации ТМС-6500, место нанесения знака поверки и место пломбирования

Рисунок 3 – Общий вид микроомметров модификации ТМС-6700, место нанесения знака поверки и место пломбирования

Программное обеспечение

Управление режимами работы и настройками микроомметров осуществляется с помощью внутреннего программного обеспечения (далее $-\Pi O$), которое встроено в защищённую от записи память микроконтроллера, что исключает возможность его несанкционированных настройки и вмешательства, приводящим к искажению результатов измерений.

Идентификационные данные ПО микроомметров приведены в таблице 2.

Таблица 2 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	ТМС-650	ТМС-6500	ТМС-6700
	интерфейс	интерфейс	интерфейс
Номер версии (идентификационный номер ПО)	не ниже	не ниже	не ниже
	1.0.0.4 – 19.01	1.004 – 19.01	1.004 – 19.01
Цифровой идентифика- тор ПО	CRC 0x67	CRC 0x67	CRC 0x67

Уровень защиты от непреднамеренных и преднамеренных изменений – «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Основные метрологические и технические характеристики микроомметров представлены в таблицах 3-5.

Таблица 3 – Метрологические характеристики микроомметров модификации ТМС-650

Характеристика	Диапазоны измерений	Разрешение	Пределы допускаемой основной абсолютной погрешности измерений 1)	Температурный коэффициент, /°С	Измерительный ток (напряжение) ²⁾
	от 0 до 999,9 мкОм от 1,0000 до 1,9999 мОм	0,1 мкОм 0,0001 мОм			10 A (20 мВ) 10 A (20 мВ)
Электрическое сопротивление	от 2,000 до 19,999 мОм от 20,00 до 199,99 мОм	0,001 мОм 0,01 мОм			10 A (200 MB) 10 A; 1A (2 B; 200 MB)
(режим	от 200,0 до 999,9 мОм	0,1 мОм	$\pm (2 \cdot 10^{-3} \cdot R + 2 \text{ e.m.p.})$	$\pm (1 \cdot 10^{-4} \cdot R + 0.1 \text{ e.m.p.})$	1 A; 0,1A (2 B; 200 мВ)
«резистивный», «индуктивный»)	от 1,0000 до 1,9999 Ом от 2,000 до 19,999 Ом	0,0001 Ом 0,001 Ом			1 A; 0,1A (2 B; 200 мВ) 0,1 A (2 В)
	от 20,00 до 199,99 Ом от 200,0 до 1999,9 Ом	0,01 Ом 0,1 Ом			10 мА (2 В) 1 мА (2 В)

Примечания:

²⁾ При измерении сопротивления индуктивных объектов напряжение не превышает 10 В.

R – измеренное значение электрического сопротивления;

е.м.р. – единица младшего разряда.

¹⁾ Погрешность нормирована для двунаправленного протекания измерительного тока; в режиме «индуктивный», с алгоритмом «быстрый», пределы допускаемой основной абсолютной погрешности измерений составляют $\pm (0.02 \cdot R + 2 \text{ e.m.p.})$;

Таблица 4 – Метрологические характеристики микроомметров модификаций ТМС-6500, ТМС-6700

		<u> </u>	Пределы допускаемой		
	Диапазоны		основной	Температурный	Измерительный
Характеристика	измерений	Разрешение	абсолютной погрешности	коэффициент, /°С	ток (напряжение) ³⁾
	1		измерений ¹⁾		, ,
	от 0 до 999,9 мкОм	0,1 мкОм	•		от 100 до 200 A (200 мВ) ²⁾
7	от 0 до 999,9 мкОм	0,1 мкОм			от 50 до 100 А (200 мВ)
Электрическое	от 1,0000 до 1,9999 мОм	0,0001 мОм			от 50 до 100 А (200 мВ)
сопротивление	от 0 до 999,9 мкОм	0,1 мкОм	$\pm (2 \cdot 10^{-3} \cdot R + 2 \text{ e.m.p.})$	$\pm (1 \cdot 10^{-4} \cdot R + 0.1 \text{ e.m.p.})$	от 20 до 50 А (200 мВ)
(режим	от 1,0000 до 3,9999 мОм	0,0001 мОм			от 20 до 50 А (200 мВ)
«резистивный»)	от 0 до 999,9 мкОм	0,1 мкОм			от 10 до 20 А (160 мВ)
	от 1,0000 до 7,9999 мОм	0,0001 мОм			от 10 до 20 А (160 мВ)
	от 0 до 999,9 мкОм	0,1 мкОм			10 A (20 мВ)
	от 1,0000 до 1,9999 мОм	0,0001 мОм			10 А (20 мВ)
Электрическое	от 2,000 до 19,999 мОм	0,001 мОм			10 А (200 мВ)
сопротивление	от 20,00 до 199,99 мОм	0,01 мОм			10 A; 1 A (2 B; 200 мВ)
(режим	от 200,0 до 999,9 мОм	0,1 мОм	$\pm (2 \cdot 10^{-3} \cdot R + 2 \text{ e.m.p.})$	$\pm (1 \cdot 10^{-4} \cdot R + 0.1 \text{ e.m.p.})$	1 A; 0,1 A (2 B; 200 мВ)
«резистивный», «индуктивный»)	от 1,0000 до 1,9999 Ом	0,0001 Ом			1 A; 0,1 A (2 B; 200 мВ)
	от 2,000 до 19,999 Ом	0,001 Ом			0,1 A (2 B)
	от 20,00 до 199,99 Ом	0,01 Ом		1	10 мА (2 В)
	от 200,0 до 1999,9 Ом	0,1 Ом			1 mA (2 B)

Примечания:

¹⁾ Погрешность нормирована для двунаправленного протекания измерительного тока; в режиме «индуктивный», с алгоритмом «быстрый» пределы допускаемой основной абсолютной погрешности измерений составляют $\pm (0.02 \cdot R + 2 \text{ e.m.p.});$

²⁾ Только для модификации ТМС-6700; ³⁾ При измерении сопротивления индуктивных объектов напряжение не превышает 5 В.

R – измеренное значение электрического сопротивления;

е.м.р. – единица младшего разряда.

Таблица 5 – Основные технические характеристики микроомметров серии ТМС

Наименование характеристики	Значение
Диапазон показаний температуры совместно с температурными зондами	от -40,0 до
ST-1, ST-3, °C	+99,9
Дискретность показаний температуры, °С	0,1
Параметры электрического питания, В:	
- от сети переменного тока частотой 50 Гц	от 187 до 264
- постоянного тока от встроенного аккумулятора 8,8 А·ч	7,2
Максимальное сопротивление измерительных проводников, мОм, не более:	
- для модификации TMC-650	300
 для модификаций ТМС-6500, ТМС-6700 	250
Габаритные размеры (длина×ширина×высота), мм, не более:	
- для модификации ТМС-650	318´257´152
 для модификаций ТМС-6500, ТМС-6700 	401′307′175
Масса, кг, не более:	
- для модификации ТМС-650	3,5
- для модификации ТМС-6500	8,2
- для модификации TMC-6700	8,7
Нормальные условия измерений:	
- температура окружающего воздуха, °С	от +21 до +25
- относительная влажность, %	от 20 до 60
- высота (над уровнем моря), м, не более	2000
Рабочие условия измерений:	
- температура окружающего воздуха, °С	от -20 до +50
- относительная влажность, %	от 20 до 90
- высота (над уровнем моря), м, не более	2000
Средняя наработка на отказ, ч	45000
Средний срок службы, лет	15

Знак утверждения типа

наносится на переднюю панель микроомметров методом трафаретной печати и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Комплектность микроомметров различных модификаций представлена в таблицах 6 – 7.

Таблица 6 – Комплект поставки микроомметров модификации ТМС-650

Наименование	Обозначение	Количество
Микроомметр	TMC-650	1 шт.
Руководство по эксплуатации		1 экз.
Паспорт		1 экз.
Методика поверки	TMC-6700-19 MΠ	1 экз.
Свидетельство о первичной поверке	-	1 экз.
Кабель двухпроводный 3 м (комплект из 2 шт.)	-	1 шт.
Зонд Кельвина двухконтактный	-	1 шт.
Зажим "Крокодил", изолированный Кельвина К06	-	2 шт.
Температурный зонд ST-3	-	1 шт.

Продолжение таблицы 6

Наименование	Обозначение	Количество
Кабель питания 230 В	-	1 шт.
Футляр L11	-	1 шт.
Аккумуляторная батарея SONEL-27	-	1 шт.
Кабель последовательного интерфейса USB	-	1 шт.
Температурный зонд ST-1	-	1 шт.*
Зажим "струбцина" Кельвина с двухпроводным кабелем		1 шт.*
Мобильный USB принтер этикеток		1 шт.*
Сканер штрих-кодов		1 шт.*
Кабель двухпроводный, 10 м, с крокодилом Кельвина		1 шт.*
Кабель двухпроводный, 25 м, с крокодилом Кельвина		1 шт.*
Примечание - * - поставляется по отдельному заказу.		

Таблица 7 – Комплект поставки микроомметров модификаций ТМС-6500, ТМС-6700

Наименование	Обозначение	Количество
Hanwellobuline	ТМС-6500 или	TOJIII ICCIBO
Микроомметр	TMC-6700	1 шт.
Руководство по эксплуатации	-	1 экз.
Паспорт	-	1 экз.
Методика поверки	ТМС-6700-19 МП	1 экз.
Свидетельство о первичной поверке	-	1 экз.
Кабель двухпроводный 3м (комплект из 2 шт.)	-	1 шт.
Кабель двухпроводный 3м, 200 А (комплект из 2 шт.)	-	1 шт.
Зажим "Крокодил" изолированный черный К03	-	2 шт.
Провод измерительный 3 м, с разъемами "банан",1 кВ, 25 А, голубой	-	2 шт.
Температурный зонд ST-3	-	1 шт.
Зажим "Крокодил" изолированный Кельвина К06	-	2 шт.
Кабель питания 230 В	-	1 шт.
Футляр L12	-	1 шт.
Кабель последовательного интерфейса USB	-	1 шт.
Температурный зонд ST-1	-	1 шт.*
Зажим "струбцина" Кельвина с двухпроводным кабелем	-	1 шт.*
Зонд Кельвина двухконтактный	-	2 шт.*
Мобильный USB принтер этикеток	-	1 шт.*
Сканер штрих-кодов	-	1 шт.*
Клещи С5-А	-	1 шт.*
Кабель RJ-45	-	1 шт.*
Провод измерительный 6 м, 200 А, черный	-	1 шт.*
Провод измерительный 10 м, 200 А, черный	-	1 шт.*
Провод измерительный 15 м, 200 А, черный	-	1 шт.*
Провод измерительный 6 м, с разъемами "банан",1 кВ,	-	1 шт.*
25 А, голубой		1 1111.
Провод измерительный 10 м, с разъемами "банан", 1 кВ,	-	1 шт.*
25 А, голубой		т шт,
Провод измерительный 15 м, с разъемами "банан", 1 кВ, 25 А, голубой		1 шт.*
Примечание - * - поставляется по отдельному заказу.	•	•

Поверка

осуществляется по документу ТМС-6700-19 МП «Микроомметры серии ТМС. Методика поверки», утвержденному ООО «ИЦРМ» 21.06.2019 г.

Основные средства поверки:

- мера электрического сопротивления однозначная MC 3081 (0,0001 Ом) (регистрационный номер в Федеральном информационном фонде 61540-15);
- катушки электрического сопротивления P310 (0,001 Ом; 0,01 Ом), P321 (0,1 Ом; 1 Ом; 10 Ом); P331 (100 Ом; 1000 Ом) (регистрационный номер в Федеральном информационном фонде 1162-58).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на корпус микроомметров и (или) на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к микроомметрам серии TMC

Приказ Минздравсоцразвития России № 1034н от 9 сентября 2011 г. «Об утверждении Перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений и производимых при выполнении работ по обеспечению безопасных условий и охраны труда, в том числе на опасных производственных объектах, и обязательных метрологических требований к ним, в том числе показателей точности»

ГОСТ 22261-94 Средства измерения электрических и магнитных величин. Общие технические условия

СНБА.411182.025 Микроомметры серии ТМС. Технические условия

Изготовитель

Общество с ограниченной ответственностью «СОНЭЛ» (ООО «СОНЭЛ»)

ИНН 7723321993

Адрес: 142714, Московская обл., Ленинский р-н, с/п Молоковское, д. Мисайлово, ул. Первомайская, д. 158A

Юридический адрес: 142713, Московская обл., Ленинский р-н, д. Григорчиково, ул. Майская, д. 12

Телефон: +7 (495) 287-43-53 Web-сайт: http://www.sonel.ru/

Испытательный центр

Общество с ограниченной ответственностью «Испытательный центр разработок в области метрологии»

Адрес: 117546, г. Москва, Харьковский проезд, д.2, этаж 2, пом. І, ком. 35,36

Телефон: +7 (495) 278-02-48

E-mail: info@ic-rm.ru

Аттестат аккредитации ООО «ИЦРМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311390 от 18.11.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «____»____2019 г.