ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Трансформаторы тока цифровые ЦТТ

Назначение средства измерений

Трансформаторы тока цифровые ЦТТ (далее по тексту – трансформаторы, ЦТТ) предназначены для измерений и масштабного преобразования силы переменного (в том числе с апериодической составляющей) и постоянного тока, а также передачи результатов преобразования в системы учета электрической энергии, устройствам измерений, защиты, автоматики, сигнализации и управления.

Описание средства измерений

Принцип действия трансформаторов заключается в масштабном преобразовании силы электрического тока и дальнейшем преобразовании сигнала в цифровом виде в соответствии с ГОСТ Р МЭК 60044-8-2010. Измерение может осуществляется одновременно преобразователями, выполненными на различных физических принципах (определяется видом исполнения трансформатора). В зависимости от уровня измеряемого напряжения обработка результатов преобразований осуществляется на первичной стороне (высокого напряжения) для исполнений преобразователей 35 кВ и выше, либо на вторичной стороне (низкого напряжения) для исполнений преобразователей 35 кВ и ниже.

Трансформаторы конструктивно состоят из следующих компонентов:

- преобразователи силы переменного и постоянного тока;
- электронный блок, расположенный на обмотке высокого напряжения (опция);
- электронный блок, расположенный на обмотке низкого напряжения;
- устройство отображения результатов измерении (далее-устройство отображения) (опция).

Первичные преобразователи силы переменного и постоянного тока представляют собой: малогабаритный трансформатор тока, пояс Роговского и датчик постоянного тока (опция). Малогабаритный трансформатор тока предназначен для передачи информации устройствам коммерческого учета электроэнергии, а пояс Роговского и датчик постоянного тока — устройствам релейной защиты и автоматики.

Электронный блок расположенный на обмотке высокого напряжения выполняет преобразование выходных сигналов первичных преобразователей силы переменного и постоянного тока в цифровой сигнал и передачу их по оптическим кабелям электронным блокам на вторичной стороне. Электронный блок расположенный на обмотке низкого напряжения обрабатывает и передает измеренные значения силы переменного и постоянного тока устройствам релейной защиты, автоматики, коммерческого учета электроэнергии и другим устройствам на подстанции в соответствии с протоколом IEC 61850-9-2 (протокол передачи может быть изменен либо дополнен другим протоколом по требованию заказчика). На выходе трансформаторы формируют несколько потоков измеренных мгновенных значений силы тока со следующими частотами дискретизации:

- 1) 4000 Γ ц (80 отчетов на период промышленной частоты 50 Γ ц) для устройств релейной защиты и автоматики, коммерческого учета электроэнергии;
- 2) 12800 Γ ц (256 отчетов на период промышленной частоты 50 Γ ц) для устройств контроля качества электроэнергии.

Трансформаторы также могут формировать потоки измеренных мгновенных значений со следующими частотами дискретизации (опция), метрологические характеристики которых не нормируются:

- 1) 4800 Γ ц (96 отчетов на период промышленной частоты 50 Γ ц и 80 отчетов на период промышленной частоты 60 Γ ц);
 - 2) 15360 Гц (256 отчетов на период промышленной частоты 60 Гц);

- 3) 14400 Γ ц (288 отчетов на период промышленной частоты 50 Γ ц и 240 отчетов на период промышленной частоты 60 Γ ц);
- 4) 96000 Гц для целей учета электроэнергии и релейной защиты и автоматики в сетях постоянного тока.

Опционально ЦТТ может выдавать дополнительную служебную информацию о параметрах измеряемых электрических сигналов и передаваемой электрической энергии, а также служебную информацию отражающую состояние трансформатора.

Синхронизация электронных блоков с системой точного времени осуществляется по внешнему стробирующему сигналу 1PPS или данным синхронизации по протоколу PTP (в зависимости от заказа).

ЦТТ может выпускаться в резервированном исполнении, при этом на стороне высокого напряжения устанавливаются два комплекта первичных измерительных преобразователей тока, установленных на одной изоляционной колонне. Передача информации от ЦТТ также может резервироваться по протоколам PRP и HSR.

Для удобства работы и проверки работоспособности ЦТТ могут содержать аналоговые выходы с первичных измерительных преобразователей силы переменного и постоянного тока.

Структура условного обозначения:

Расшифровка структуры условного обозначения трансформатора представлена в таблице 1.

Таблица 1 – Структура условного обозначения трансформатора

ЦТТ	Обозначение типа: Трансформатор тока цифровой		
A	Исполнение тран	Исполнение трансформатора по способу установки	
	0	Опорного исполнения	
	П	Подвесного исполнения	
	Ш	Шинные (безопорное исполнение)	
Б	Исполнение трансформатора по количеству измерительных фаз		
	1	Однофазное исполнение	
	2	Двухфазное исполнение	
	3	Трехфазное исполнение	
В	Исполнение трансформатора по классу напряжения		
	6	6 кВ	
	10	10 кВ	
	15	15 кВ	
	20	20 кВ	
	24	24 кВ	
	27	27 кВ	
	35	35 кВ	
	110	110 кВ	
	150	150 кВ	
	220	220 кВ	
Γ	Номинальный ток, А		
Д	Класс точности по току для коммерческого учета электроэнергии		
Е	Класс точности по току с предельной кратностью для релейной защиты		

Продолжение таблицы 1

	жение таолицы т			
Ж		Климатическое исполнение и категория размещения		
	У1 по	для работы на открытом воздухе (от -45 до +40 °C)		
	ГОСТ 15150-69			
	УХЛ1 по	для работы на открытом воздухе (от -60 до +40 °C)		
	ΓΟCT 15150-69			
	У2 по	для работы в помещениях (от -45 до +40 °C)		
	ГОСТ 15150-69			
	УХЛ2 по	для работы в помещениях (от -60 до +40 °C)		
	ГОСТ 15150-69			
	П	для работы в помещениях (-10 до +40 °C)		
3	Тип используеми	Тип используемых выходов, комбинация из символов		
	I	Аналоговый выход – выходной сигнал силы переменного		
		и постоянного тока, с указанием номинального тока в ам-		
		перах (выполняется по согласованию)		
	D	Цифровые выходы с указанием числа выходов		
И	Тип источника п	Тип источника питания		
	1	Один универсальный вход 220 В постоянного или пере-		
		менного тока		
	2	Два универсальных входа 220 В постоянного или пере-		
		менного тока		
	В	Высоконадежный резервированный блок питания		
К	Наличие резерви	Наличие резервирования		
	- (Без символа)	Без резервирования		
	P	С двойным резервированием – два комплекта первичных		
		преобразователей тока в едином измерительном узле с ре-		
		зервированными электронными блоками		
Л	Наличие устройс	Наличие устройства отображения информации		
	- (Без символа)	Без устройства отображения результатов		
	Д	С устройством отображения результатов с дисплеем		
M	Расположение эл	Расположение электронного блока на стороне низкого напряжения		
	- (Без символа)	В основании колонны		
	OK	В отдельном корпусе		
	1 -	Γ		

Пример условного обозначения:

Трансформатор тока цифровой ЦТТ, в опорном и трехфазном исполнении, на класс напряжения 110 кВ, с номинальным током 2000 A, с классом точности по току 0,2S для коммерческого учета и 5TPE с предельной кратностью 51 для релейной защиты, для наружной установки с рабочим температурным диапазоном от минус 60 до плюс 40 °C, с аналоговым выходом по току 1 A и двумя цифровыми выходами, с резервированием аналогового и цифрового каналов, с устройством отображения результатов измерений, электронный блок на стороне низкого напряжения расположен в основании колонны.

Общий вид и места пломбирования трансформаторов представлены на рисунках 1-12. Общий вид устройства отображения представлен на рисунке 13.

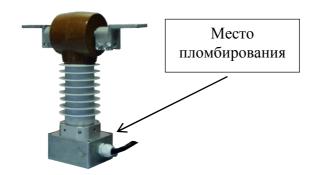


Рисунок 1 – Общий вид ЦТТ 6 (10) кВ опорного исполнения, электронный блок располагается в основании первичного преобразователя

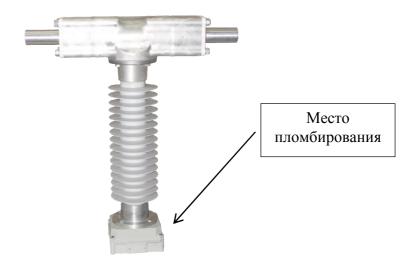


Рисунок 2 – Общий вид ЦТТ (15 – 35) кВ опорного исполнения, электронный блок располагается в основании первичного преобразователя

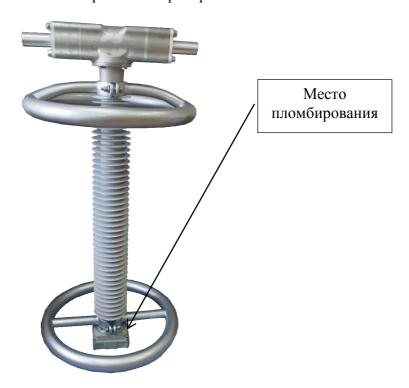


Рисунок 3 — Общий вид ЦТТ (110 — 220) кВ опорного исполнения, электронный блок располагается в основании первичного преобразователя

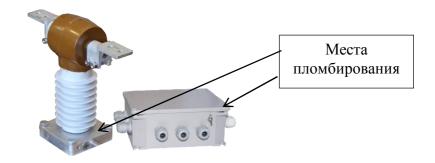


Рисунок 4 – Общий вид ЦТТ 6 (10) кВ опорного исполнения, электронный блок располагается в отдельном корпусе (шкафу)

Рисунок 5 — Общий вид ЦТТ (15-35) кВ опорного исполнения, электронный блок располагается в отдельном корпусе (шкафу)

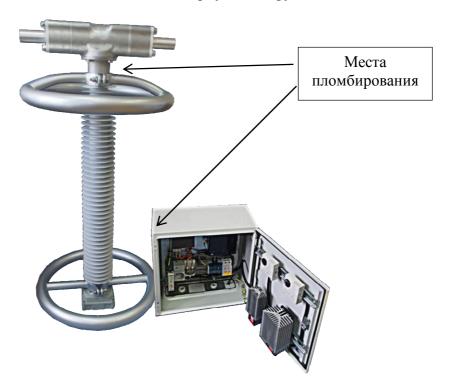


Рисунок 6 — Общий вид ЦТТ (110 - 220) кВ опорного исполнения, электронный блок располагается в отдельном корпусе (шкафу)

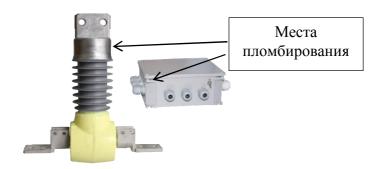


Рисунок 10 – Общий вид ЦТТ 6 (10) кВ подвесного исполнения, электронный блок располагается в отдельном корпусе (шкафу)

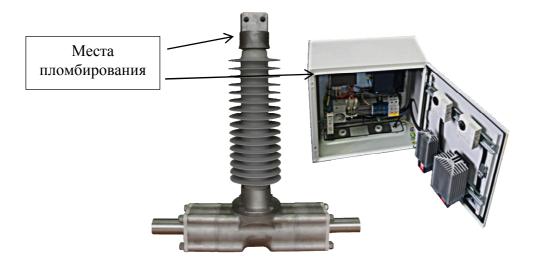


Рисунок 11 – Общий вид ЦТТ (15-35) кВ подвесного исполнения, электронный блок располагается в отдельном корпусе (шкафу)

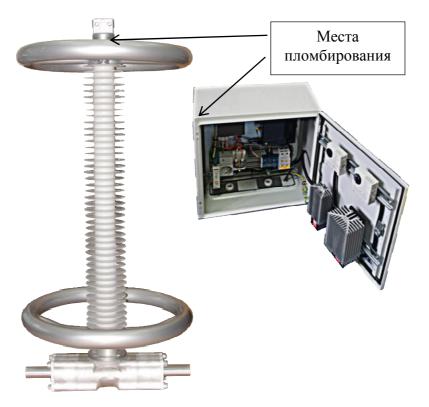


Рисунок 12 – Общий вид ЦТТ (110 – 220) кВ подвесного исполнения, электронный блок располагается в отдельном корпусе (шкафу)

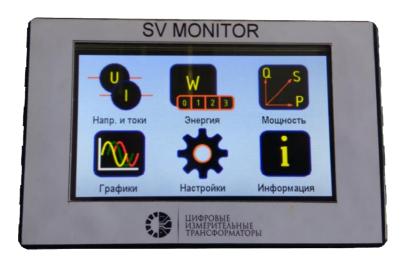


Рисунок 13 — Общий вид устройства отображения результатов измерений ЦТТ (6 (10) -220) кВ

Программное обеспечение

Встроенное программное обеспечение (далее по тексту – ПО) трансформаторов представляет собой набор микропрограмм, предназначенных для обеспечения функционирования трансформатора, управления интерфейсом и т.д. Данное ПО является метрологически значимым, характеристики нормируются с учетом влияния ПО.

Уровень защиты от непреднамеренных и преднамеренных изменений – «Высокий» в соответствии с Р 50.2.077-2014.

Идентификационные данные метрологически значимой части встроенного ΠO приведены в таблице 2.

Таблица 2 – Характеристики метрологически значимой части встроенного ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ctt.bin
Номер версии (идентификационный номер ПО), не ниже	1.1.0

Метрологические и технические характеристики

Основные метрологические и технические характеристики трансформаторов представлены в таблице 3.

Таблица 3 – Метрологические и технические характеристики трансформаторов

Наименование характеристики	Значение	
Номинальные значения напряжения переменного тока		
U_{HOM} , κB :		
- для исполнения по классу напряжения ЦТТ – 6	$6/\sqrt{3}$	
- для исполнения по классу напряжения ЦТТ – 10	$10/\sqrt{3}$	
- для исполнения по классу напряжения ЦТТ – 15	$15/\sqrt{3}$	
- для исполнения по классу напряжения ЦТТ 20	$20/\sqrt{3}$	
- для исполнения по классу напряжения ЦТТ – 24	24/√3	
- для исполнения по классу напряжения ЦТТ – 27	27/√3	
- для исполнения по классу напряжения ЦТТ – 35	35/√3	
- для исполнения по классу напряжения ЦТТ 110	$110/\sqrt{3}$	
- для исполнения по классу напряжения ЦТТ – 150	150/√3	
- для исполнения по классу напряжения ЦТТ 220	220/√3	
Номинальные значения первичного тока, А	от 10 до 40 000	
Классы точности по току согласно	0,1; 0,2; 0,2S; 0,5; 0,5S; 1; 3; 5; 5P;	
ГОСТ Р МЭК 60044-8-2010	5TPE; 10P	

Продолжение таблицы 3

Продолжение таблицы 3		
Наименование характеристики	Значение	
Номинальная частота, Гц	50 или 60	
Диапазон номинальных вторичных токов для аналогового токового выхода, $\mathbf{A}^{1)}$	от 0,01 до 5	
Предельное значение выходной мощности, В-А, не более	10	
Протокол синхронизации времени по входу	1PPS; PTP	
Параметры электрического питания электронного блока,		
в зависимости от модификации:		
- напряжение переменного тока частотой 50 Гц, В	от 176 до 264; от 88 до 132	
- напряжение постоянного тока, В	от 176 до 264; от 88 до 132; от 48 до 72; от 38,4 до 57,6; от 28,8 до 43,2; от 19,2 до 28,8; от 21,6 до 32,4	
потребляемая мощность, Вт, не более	10	
Габаритные размеры (для однофазного исполнения), (длина×ширина×высота), мм, не более: - для исполнения по классу напряжения ЦТТ – 6	300×150×400	
- для исполнения по классу напряжения ЦТТ – 10	300×150×400	
- для исполнений по классу напряжения ЦТТ 15,		
ЦТТ– 20, ЦТТ– 24, ЦТТ– 27	1000×500×700 ²⁾	
- для исполнения по классу напряжения ЦТТ – 35	1000×500×1000 ²⁾	
- для исполнения по классу напряжения ЦТТ – 110	1000×650×1600 ²⁾	
- для исполнений по классу напряжения ЦТТ – 150, ЦТТ – 220	1000×650×3000 ²⁾	
Масса (для однофазного исполнения), кг, не более:		
- для исполнения по классу напряжения ЦТТ 6	10	
- для исполнения по классу напряжения ЦТТ – 10	10	
- для исполнений по классу напряжения ЦТТ 15,		
ЦТТ– 20, ЦТТ– 24, ЦТТ– 27	20	
- для исполнения по классу напряжения ЦТТ – 35	45	
- для исполнения по классу напряжения ЦТТ – 110	70	
- для исполнений по классу напряжения ЦТТ – 150,		
ЦТТ– 220	115	
Габаритные размеры электронного блока, (дли- на×ширина×высота), мм, не более	1000×500×1500	
Масса электронного блока, кг, не более	50	
Климатическое исполнение по ГОСТ 15150-69	У1, УХЛ1, У2, УХЛ2	
Рабочие условия измерений (для климатического испол-	, , , , , , , , , , , , , , , , , , ,	
нения обозначенного «П»):		
- температура окружающего воздуха, °С	от -10 до +40	
Средняя наработка до отказа, ч, не менее	160000	
Средний паработка до отказа, т, не менее	30 ³⁾	
средний срок служові, лот, не менес	50	

Примечания

1) - определяется вариантом исполнения;

2) - размеры указаны с учетом экранных колец выравнивания потенциала;

3) - срок указан для основных конструктивных элементов ЦТТ

Знак утверждения типа

наносится на табличку трансформаторов методом термопечати или трафаретной печати и (или) на титульные листы паспорта типографским способом.

Комплектность средства измерений

Комплектность трансформаторов представлена в таблице 4.

Таблица 4 – Комплектность трансформаторов

Наименование	Обозначение	Количество
Трансформатор тока цифровой ЦТТ	-	1 шт.
Руководство по эксплуатации	САПМ.671200.101 РЭ	1 экз.
Паспорт	САПМ.671200.101 ПС	1 экз.
Методика поверки	САПМ.671200.101 МП	1 экз.
Упаковка	-	1 шт.

Поверка

осуществляется по документу САПМ.671200.101 МП «Трансформаторы тока цифровые ЦТТ. Методика поверки», утвержденному ООО «ИЦРМ» 25.12.2018 г.

Основные средства поверки:

- трансформатор тока измерительный лабораторный ТТИ-200 (регистрационный номер в Федеральном информационном фонде № 37898-08);
- трансформатор тока измерительный лабораторный ТТИ-5000.51 (регистрационный номер в Федеральном информационном фонде № 55278-13);
- установка поверочная векторная компарирующая УПВК-МЭ 61850 (регистрационный номер в Федеральном информационном фонде № 60987-15);
- прибор электроизмерительный эталонный многофункциональный Энергомонитор 3.1 КМ (регистрационный номер в Федеральном информационном фонде № 52854-13).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится в свидетельство о поверке или в паспорт.

Сведения о методиках (методах) измерений отсутствуют.

Нормативные и технические документы, устанавливающие требования к трансформаторам тока цифровым ЦТТ

ГОСТ Р МЭК 60044-8-2010 Трансформаторы измерительные. Часть 8. Электронные трансформаторы тока

САПМ.671200.101 ТУ Трансформаторы тока цифровые ЦТТ. Технические условия

Изготовитель

Общество с ограниченной ответственностью Научно-производственное объединение «Цифровые измерительные трансформаторы» (ООО НПО «ЦИТ»)

ИНН 3702100763

Адрес: 153000, г. Иваново, ул. Большая Воробьевская, дом 26, квартира 27

Телефон: +7 (910) 691-97-76 E-mail: info@digitrans.ru

Web-сайт: digitrans.ru, цифтранс.рф

Испытательный центр

Общество с ограниченной ответственностью «Испытательный центр разработок в области метрологии»

Адрес: 117546, г. Москва, Харьковский проезд, д.2, этаж 2, пом. І, ком. 35,36

Телефон: +7 (495) 278-02-48

E-mail: info@ic-rm.ru

Аттестат аккредитации ООО «ИЦРМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311390 от 18.11.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. « ___ » _____ 2019 г.