### УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «20» декабря 2021 г. № 2948

Лист № 1

Регистрационный № 84170-21 Всего листов 6

# ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

# Газоанализаторы тип 04

#### Назначение средства измерений

Газоанализаторы тип 04 (далее – газоанализаторы) предназначены для непрерывного автоматического контроля за содержанием токсичных газов (сероводорода H<sub>2</sub>S, оксида углерода CO, диоксида серы SO<sub>2</sub>, аммиака NH<sub>3</sub>, диоксида азота NO<sub>2</sub>, фосфина  $PH_3$ , хлора  $Cl_2$ , синильной кислоты HCN) и кислорода  $O_2$  в воздухе рабочей зоны.

#### Описание средства измерений

К настоящему типу средства измерений относятся газоанализаторы следующих модификаций ОХ-04, ОХ-04G, HS-04, CO-04, CO-04 (C-), SC-04, CX-04, которые отличаются друг от друга определяемыми компонентами.

Принцип действия газоанализаторов определяется типом используемого сенсора:

- электрохимическим основан на измерении тока, вырабатываемого при взаимодействии электродов датчика с целевым газом;
- гальваническим основан на измерении тока, вырабатываемого при взаимодействии электродов датчика с кислородом

Способ отбора пробы – диффузионный.

Газоанализаторы представляют собой автоматические портативные одноканальные приборы непрерывного действия.

Конструктивно газоанализаторы выполнены одноблочными в ударопрочном пластмассовом корпусе, снабженным металлическим ДЛЯ крепления газоанализатора.

Газоанализаторы модификации СХ-04 оснащены сдвоенным сенсором О2/СО, что позволяет измерять до 2-х компонентов одновременно.

Газоанализаторы имеют жидкокристаллический монохромный цифровой дисплей с подсветкой, обеспечивающей отображение:

- результатов измерений содержания определяемых компонентов;
- текущих даты и времени;
- уровня заряда аккумуляторов;
- трех порогов аварийной сигнализации;
- меню пользователя.

Газоанализаторы обеспечивают выполнение следующих функций:

- непрерывное измерение содержания определяемых компонентов;
- сравнение результатов измерений с заданными уровнями срабатывания сигнализации;
  - память данных / журнал событий;
  - самодиагностику газоанализатора при включении электрического питания.

Газоанализаторы обеспечивают срабатывание сигнализации по трем порогам:

- звуковым сигналом;
- светодиодным индикатором;
- вибрационным сигналом тревоги;
- отображением на дисплее символов, обозначающих пороги срабатывания.

Общий вид газоанализаторов представлены на рисунках 1-7.

Пломбирование газоанализаторов не предусмотрено.

Серийные номера виде цифро-буквенного обозначения, состоящие из арабских цифр и символов латинского алфавита, наносятся на нижней панели газоанализатора.

Нанесения знака поверки на газоанализатор не предусмотрено Знак поверки наносится на свидетельство о поверке в соответствии с действующим законодательством.



Рисунок 1 – Общий вид газоанализаторов



Рисунок 4 — Общий вид газоанализаторов модификации ОХ-04



Рисунок 2 – Общий вид газоанализаторов модификации CO-04 (C-)



Рисунок 5 – Общий вид газоанализаторов модификации OX-04G



Рисунок 3 – Общий вид газоанализаторов модификации HS-04



Рисунок 6 – Общий вид газоанализаторов модификации CX-04



Рисунок 7 – Общий вид газоанализаторов модификации SC-04

### Программное обеспечение

Газоанализаторы имеют встроенное, метрологически значимое программное обеспечение (ПО), предназначенное для обработки измерительной информации. Данное ПО устанавливается в газоанализаторы на заводе-изготовителе во время производственного цикла, что исключает возможность несанкционированных настроек и вмешательства, приводящих к искажению результатов измерений.

Встроенное ПО обеспечивает выполнение следующих основных функций:

- обработку измерительной информации;
- диагностику аппаратной части газоанализатора;
- проведение настройки газоанализатора;
- формирование цифрового выходного сигнала;

Уровень защиты встроенного ПО «высокий» в соответствии с Р 50.2.077-2014. Метрологически значимая часть ПО СИ и измеренные данные достаточно защищены с помощью специальных средств защиты от преднамеренных изменений.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1 – Идентификационные данные ПО

| Идентификационные данные (признаки)                | Значение      |
|----------------------------------------------------|---------------|
| Идентификационное наименование ПО                  | Встроенное ПО |
| Номер версии (идентификационный номер) ПО, не ниже | 0001          |
| Цифровой идентификатор ПО                          | -             |

# Метрологические и технические характеристики

Таблица 2 – Основные метрологические характеристики

|                     | Определяемый                               | Диапазон измерений<br>определяемого компонента |                                          | Пределы допускаемой основной погрешности, % |               | Время установления            |
|---------------------|--------------------------------------------|------------------------------------------------|------------------------------------------|---------------------------------------------|---------------|-------------------------------|
| Модификация         | компонент                                  |                                                |                                          | приведенной 1)                              | относительной | показаний Т <sub>90</sub> , с |
| OX-04               | Vyayanay (O )                              | от 0 до 40 % об.д.                             | от 0 до 10 % об.д. включ.                | ±5                                          | -             | 10                            |
| OX-04G              | Кислород (О2)                              |                                                | св. 10 до 40 % об.д.                     | -                                           | ±5            |                               |
| HS-04               | (II C)                                     | от 0 до 200 млн <sup>-1</sup>                  | от $0$ до $20$ млн $^{-1}$ включ.        | ±10                                         | -             | 20                            |
| ПЗ-04               | Сероводород (H <sub>2</sub> S)             |                                                | св. 20 до 200 млн <sup>-1</sup>          | -                                           | ±10           |                               |
| CO-04               | Оками ушиала на (СО)                       | от 0 до 2000 млн <sup>-1</sup>                 | от $0$ до $500$ млн $^{-1}$ включ.       | ±10                                         | -             | 10                            |
| CO-04 (C-)          | Оксид углерода (СО)                        |                                                | св. 500 до 2000 млн <sup>-1</sup>        | -                                           | ±10           |                               |
|                     | Диоксид серы (SO <sub>2</sub> )            | от 0 до 100 млн <sup>-1</sup>                  | от $0$ до $4$ млн $^{-1}$ включ.         | ±15                                         | -             | 20                            |
| SC-04               |                                            | от 0 до 100 млн                                | св. 4 до 100 млн <sup>-1</sup>           | -                                           | ±15           |                               |
|                     | Аммиак (NH <sub>3</sub> ) от 0 до 4        | от 0 до 400 млн <sup>-1</sup>                  | от 0 до 10 млн <sup>-1</sup> включ.      | ±15                                         | -             | 20                            |
|                     |                                            | от 0 до 400 млн                                | св. 10 до 400 млн <sup>-1</sup>          | -                                           | ±15           |                               |
|                     | Диоксид азота (NO <sub>2</sub> )           | от 0 до 20 млн <sup>-1</sup>                   | от $0$ до $2$ млн $^{-1}$ включ.         | ±15                                         | -             | 20                            |
|                     |                                            |                                                | св. 2 до 20 млн <sup>-1</sup>            | -                                           | ±15           |                               |
|                     | Фосфин (РН3)                               | от 0 до 10 млн <sup>-1</sup>                   | от 0 до 10 млн <sup>-1</sup>             | ±20                                         | -             | 20                            |
| Синильн             | Хлор (Cl <sub>2</sub> )                    | от 0 до 3 млн <sup>-1</sup>                    | от 0 до 3 млн <sup>-1</sup>              | ±25                                         | -             | 20                            |
|                     | Синильная<br>кислота (HCN) от 0 до 30,0 мл | 200                                            | от $0$ до $5,0$ млн <sup>-1</sup> включ. | ±20                                         | -             | 20                            |
|                     |                                            | от 0 до 30,0 млн 1                             | св. 5,0 до 30,0 млн <sup>-1</sup>        | -                                           | ±20           | 20                            |
| CX-04 <sup>2)</sup> | Кислород (О2)                              | от 0 до 40 % об.д.                             | от 0 до 10 % об.д. включ.                | ±5                                          | -             | - 10                          |
|                     |                                            |                                                | св. 10 до 40 % об.д.                     | -                                           | ±5            |                               |
|                     | Оксид углерода (СО)                        | от 0 до 2000 млн <sup>-1</sup>                 | от $0$ до $100$ млн $^{-1}$ включ.       | ±10                                         | -             | - 10                          |
|                     |                                            |                                                | св. 100 до 2000 млн <sup>-1</sup>        | -                                           | ±10           |                               |

 $<sup>^{1)}</sup>$  — приведенная погрешность нормирована к верхнему значению диапазона измерений;  $^{2)}$  - сдвоенный сенсор  $\mathrm{O}_2/\mathrm{CO}$ .

Таблица 3 – Дополнительные метрологические характеристики

| , , , , , , , , , , , , , , , , , , , ,                                 |           |
|-------------------------------------------------------------------------|-----------|
| Наименование характеристики                                             |           |
| Пределы допускаемой дополнительной погрешности от влияния изменения     |           |
| температуры, окружающей и анализируемой сред в рабочих условиях         |           |
| эксплуатации на каждые 10°C от температуры определения основной         |           |
| погрешности, в долях от предела допускаемой основной погрешности        |           |
| Пределы допускаемой дополнительной погрешности от влияния изменения     |           |
| влажности окружающей и анализируемой сред в рабочих условиях            |           |
| эксплуатации от влажности при определении основной погрешности, в долях |           |
| от пределов допускаемой основной погрешности                            | $\pm 0,5$ |

Таблица 4 – Основные технические характеристики

| Наименование характеристики                                    | Значение           |
|----------------------------------------------------------------|--------------------|
| Габаритные размеры (ширина×высота×глубина), мм, не более       | 54×67×24           |
| Масса, кг, не более                                            | 0,93               |
| Условия эксплуатации:                                          |                    |
| - температура окружающей среды, °С                             | от -40 до +60      |
| - относительная влажность (без конденсации влаги), %, не более | 95                 |
| - атмосферное давление, кПа                                    | от 80 до 110       |
| Напряжение питания постоянного тока от двух батареек ААА       |                    |
| типа LR03 или двух никель-металлгидридных аккумуляторов, В     | 3,3                |
| Маркировка взрывозащиты:                                       |                    |
| - при использовании батареек                                   | 0Ex ia IIC T4 Ga X |
| - при использовании аккумуляторов                              | 0Ex ia IIC T3 Ga X |
| Степень защиты IP по ГОСТ 14254-2015                           | IP 66/67           |
| Время прогрева, секунд, не более                               | 30                 |
| Средний срок службы, лет                                       | 10                 |
| Средняя наработка на отказ, ч                                  | 36800              |

### Знак утверждения типа

наносится типографским способом на титульный лист руководства по эксплуатации.

## Комплектность средства измерений

Таблица 5 – Комплектность средства измерений

| Наименование                                                                    | Обозначение              | Количество |
|---------------------------------------------------------------------------------|--------------------------|------------|
| Газоанализатор                                                                  | в соответствии с заказом | 1 шт.      |
| Упаковка                                                                        | -                        | 1 шт.      |
| Защитный чехол                                                                  | -                        | 1 шт.      |
| Комплект элементов питания AAA типа LR03 или никель-металлгидридный аккумулятор | -                        | 1 комп.    |
| Руководство по эксплуатации                                                     | PT0E-1894                | 1 экз.     |
| Паспорт                                                                         | ПС-2020/04               | 1 экз.     |
| Методика поверки                                                                | МП-300/06-2021           | 1 экз.     |

### Сведения о методиках (методах) измерений

приведены в разделе 11 «ПРИЛОЖЕНИЯ», документа «РТ0Е-1894 Газоанализаторы тип 04. Руководство по эксплуатации»

### Нормативные документы, устанавливающие требования к газоанализаторам тип 04

Приказ Федерального агентства по техническому регулированию и метрологии от «31» декабря 2020 г. № 2315 «Об утверждении государственной поверочной схемы для средств измерений содержания компонентов в газовых и газоконденсатных средах»

Постановление Правительства Российской Федерации от «16» ноября 2020 г. № 1847 «Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений» (п. 4.43)

ГОСТ 13320-81 Газоанализаторы промышленные автоматические. Общие технические условия

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия

Техническая документация фирмы-изготовителя «Riken Keiki Co, Ltd»

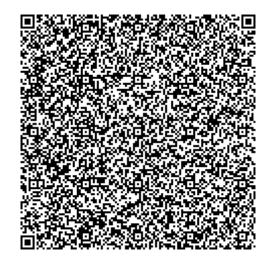
#### Изготовитель

«Riken Keiki Co, Ltd», Япония

Адрес: 2-7-6 Azusawa, Itabashi-ku, Tokyo, 174-8744, Japan

Телефон: + 81 3 3966 1113; Факс: + 81 3 3558 0110

Web-сайт: <u>www.rikenkeiki.co.jp</u> E-mail: <u>intdept@rikenkeiki.co.jp</u>


#### Испытательный центр

Общество с ограниченной ответственностью «ПРОММАШ ТЕСТ» (ООО «ПРОММАШ ТЕСТ»)

Адрес: 119530, г. Москва, Очаковское ш., д. 34, пом. VII, комн.6

Телефон: +7 (495) 481-33-80 E-mail: info@prommashtest.ru

Регистрационный номер RA.RU.312126 в Реестре аккредитованных лиц в области обеспечения единства измерений Росаккредитации

