Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева» ФГУП «ВНИИМ им.Д.И.Менделеева»

Государственная система обеспечения единства измерений

Анализаторы multi EA 5100

МЕТОДИКА ПОВЕРКИ МП-242-2447-2021

И.о. руководителя НИО государственных эталонов в области физико-химических измерений ФГУП «ВНДИМ им./Д.И. Менделеева»

А.В. Колобова

Ст. научный сотрудник ФГУП «ВНИИМ им. Д.И. Менделеева»

М.А. Мешалкин

Настоящая методика поверки распространяется на анализаторы multi EA 5100 и устанавливает методы и средства их первичной поверки (до ввода в эксплуатацию и после ремонта) и периодической поверки в процессе эксплуатации.

Методика поверки должна обеспечивать прослеживаемость поверяемых анализаторов к государственному первичному эталону ГЭТ 208-2014 «Государственный первичный эталон единиц массовой (молярной) доли и массовой (молярной) концентрации органических компонентов в жидких и твёрдых веществах и материалах на основе жидкостной и газовой хроматомасс-спектрометрии с изотопным разбавлением и гравиметрии».

Метод, обеспечивающий реализацию методики поверки – косвенное измерение поверяемым средством величины, воспроизводимой стандартным образцом.

Методикой поверки предусмотрена возможность проведения поверки отдельных измерительных каналов (детекторов) из состава анализатора.

1. Перечень операций поверки

1.1. При проведении поверки должны быть выполнены следующие операции, указанные в таблице 1.

Таблица 1- Операции поверки

№ п/п	Наименование операции	Номер пункта методики по- верки	Обязательность проведения операции при	
			первичной поверке	периодической поверке
1.	Внешний осмотр	п. 6	да	да
2.	Опробование	п. 7.2	да	да
3.	Проверка соответствия программного обеспечения (ПО)	п. 8	да	да
4.	Определение метрологических характеристик	п. 9	да	да

1.2. Если при проведении той или иной операции поверки получен отрицательный результат, то дальнейшая поверка прекращается.

2. Требования к условиям проведения поверки

- 2.1. При проведении поверки должны быть соблюдены следующие условия:
- температура окружающей среды

от 15 до 30 °C;

- относительная влажность

не более 80 %.

3. Требования к специалистам, осуществляющим поверку

3.1. К работе с анализаторами и проведению поверки допускаются лица, ознакомленные с руководством по эксплуатации поверяемого анализатора и инструкциями (руководствами) по применению средств измерений, стандартных образцов и вспомогательных средств поверки и имеющие квалификацию не ниже бакалавра (инженера) и прошедшие инструктаж по технике безопасности.

4. Метрологические и технические требования к средствам поверки

4.1. При проведении поверки применяют средства, указанные в таблице 2.

Таблица 2 - Средства поверки

Номер	Наименование эталонного средства измерений или вспомогательного средства
пункта	поверки, номер документа, регламентирующего технические требования к сред-
методики	ству, метрологические и технические характеристики
поверки	
7, 9	Стандартные образцы: - стандартный образец массовой доли азота в нефтепродуктах (имитатор) (СО МДАН-ПА) ГСО 10318-2013 (СО с массовой долей азота в диапазоне от 3 до 8 млн ⁻¹); - стандартный образец массовой доли серы в нефтепродуктах (имитатор) (СО ССН-ПА) ГСО 10202-2013 (СО для УФ-флуоресцентного анализа с массовой долей серы в диапазоне от 3 до 8 млн ⁻¹); - стандартный образец состава хлорбензола (ХлБ-ВНИИМ) ГСО 11533-2020; - стандартный образец состава изооктана (АЗ.1.О-109-ЦСО) ГСО 7323-96. Вспомогательные средства поверки:
	- изооктан эталонный ГОСТ 12433-83.
2	Средства измерений: - меры вместимости: пипетки 2 класса точности по ГОСТ 29227-91, колбы наливные 2 класса точности по ГОСТ 1770-74: - весы лабораторные высокого класса точности по ГОСТ ОІМL R 76-1-2011 - термогигрометр электронный или гигрометр психрометрический, зарегистрированные в Федеральном фонде по обеспечению единства измерений (например, ФИФ №22129-09; ФИФ № 69566-17 или аналогичные).

- 4.2. Допускается применение других средств поверки, обеспечивающих определение метрологических характеристик поверяемых анализаторов с требуемой точностью.
- 4.3. Все средства измерений, используемые при поверке, должны иметь действующие свидетельства о поверке, а стандартные образцы применяться в пределах срока годности экземпляра.
- 4.4. При поверке анализаторов для определения содержания общей серы необходимо использовать стандартные образцы, предназначенные для анализа методом УФ-флуоресценции.

5. Требования (условия) по обеспечению безопасности проведения поверки

5.1. При проведении поверки требуется следовать правилам безопасности, изложенным в разделе 3 Руководства по эксплуатации анализаторов.

6. Внешний осмотр анализаторов

- 6.1. При внешнем осмотре устанавливают соответствие анализаторов следующим требованиям:
 - отсутствие внешних повреждений (трещин, вмятин и др.), влияющих на работоспособность:
 - исправность органов управления;
 - соответствие маркировки требованиям эксплуатационной документации.

Анализаторы считают выдержавшими внешний осмотр, если они соответствуют указанным выше требованиям.

7. Подготовка к поверке и опробование

7.1. Подготовка к поверке

Перед проведением поверки следует изучить Руководство по эксплуатации анализатора (далее – РЭ) и настоящую методику, а также обеспечить выполнение условий поверки и требований техники безопасности согласно разделу 5.

Подготавливают средства поверки, перечисленные в разделе 4.

Подготавливают анализатор к работе в соответствии с РЭ. Подключают анализатор к сети, включают электропитание и прогревают анализатор в течение 30 мин.

П р и м е ч а н и е - Допускается проведение проверки соответствия программного обеспечения (см. раздел 8), не дожидаясь окончания времени прогрева анализатора.

Допускается участие в поверке операторов, обслуживающих анализатор (под контролем поверителя).

7.2. Опробование

Опробование анализатора проводится в автоматическом режиме после включения питания. В случае успешного прохождения тестирования на дисплее анализатора появляется заставка, и на дисплее и отсутствуют сообщения об ошибках.

8. Проверка соответствия программного обеспечения

- 8.1. В главном меню программного обеспечения (ПО) multiWin в строке команд щелкнуть мышью на команде «Помощь». В открывшемся окне щелкнуть мышью по строке «Информация о multiWin», в результате чего откроется окно, в котором приведены идентификационное название ПО и номер версии ПО.
- 8.2. Анализатор считается выдержавшим проверку по п. 8, если версия ПО не ниже, чем указано в таблице 3.

Таблица 3 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	multiWin	
Номер версии (идентификационный номер) ПО	не ниже 5.7.0.0	
Цифровой идентификатор ПО	-	

9. Проведение поверки

- 9.1. Определение чувствительности
- 9.1.1. Измерения допускается проводить только в одном положении печи либо в вертикальном, либо в горизонтальном.

Создать и загрузить метод для определения общего азота (TN) или общей серы (TS) или общего хлора (Cl) или общего углерода (TC). Допускается создавать метод для одновременного определения общего азота и общей серы. Обязательные и рекомендуемые значения основных параметров метода и серии измерений приведены в таблице 4. Значения остальных параметров метода, не указанных в таблице 4, принимаются любыми в пределах, допустимых для задания в ПО multiWin. Для них рекомендуется применять значения, предлагаемые в ПО multiWin как значения по умолчанию.

Значение плотности, заданное в ПО multiWin, не влияет на результаты измерений, используемые для поверки. При желании значение плотности, отличное от заданного в методе, возможно задать в ПО multiWin непосредственно перед началом измерения, не изменяя его в установках метода.

Холостые значения, заданные в ПО multiWin, допускается оставить без изменения, т.к. они не влияют на величину сигнала, используемого для поверки анализаторов.

После загрузки метода прогреть анализатор в течение не менее 2 часов. Непосредственно перед началом измерения необходимо убедиться, что количество повторных измерений и объем ввода заданы правильно. Данные параметры возможно задать в ПО multiWin непосредственно перед началом измерения, не изменяя их в установках метода, в случае если в методе значение отличается от требуемого.

Таблица 4 - Основные значения параметров метода и серии измерений

Параметр метода	Определяемый элемент			
параметр метода	TN	TS	C1	TC
Обязат	ельные значе	ния 1)		
Определения:				
Минимальное число измерений	5	5	5	5
Максимальное число измерений	7	7	7	7
Коэффициент вариации, %	3	3	5	5
Режим МРО (при наличии, только для		0		
определения TS)	-	(не активн.)	-	-
Максимальное время интегрирования, с	не менее 800	не менее 800	не менее 1200	не менее 500
Рекомен	дуемые знач	ения ²⁾		
Объем вводимой пробы, мкл ³⁾	40	40	100	40
Количество промывок пробой перед				
серией повторных измерений (перед	не менее 2	не менее 2	не менее 2	не менее 2
повторением 1)				
Количество остальных промывок, зада-				
ваемых в методе, кроме промывок про-	0	0	0	0
бой перед серией повторных измерений	U		U	U
(перед повторением 1)				
Температура печи, °С	1050	1050	1050	1050
Время вторичного сжигания, с	60	60	60	60
Поток дополнительного кислорода				
(Фаза 1), только для TN в горизонталь-	0	-	-	-
ном режиме, мл/мин				
Поток аргона (Фаза 1), мл/мин	200	200	200	200
Поток кислорода при вторичном сжига-	200	200	200	200
нии, мл/мин				
Скорость забора пробы, мкл/с	2	2	2	2
Скорость дозирования пробы, мкл/с	2	2	2	2
Максимальный дрейф (только для				
определения хлора с ячейкой «высоко-	_	_	50	-
чувствительная (high sensitive, hs)»),				
у.е. (отсчет, count)/мин				
Температура ячейки (только для опре-	_	_	от 18 до 20	-
деления хлора), °С			7.25	
Порог начала интегрирования (старт),	не более	не более	-	не более
у.е. (отсчет, count)	0,5	0,5		0,5
Порог окончания интегрирования (ба-	не более	не более	не более	не более
зисная аппроксимация), у.е. (отсчет,	0,5	0,5	25	0,5
Count)			45	

¹⁾ Обязательные значения параметров метода необходимо задавать строго в соответствии с таблицей 4.

²⁾ Рекомендуемые значения параметров метода являются оптимальными для проведения поверки, но могут быть изменены в допустимых пределах, указанных в ПО multiWin, если требуется.

³⁾ Объем вводимой пробы может быть изменен в случае невозможности ввода приведенного в таблице объема из-за отсутствия в комплекте прибора шприца с необходимым объемом.

9.1.2. Провести промывку измерительного тракта анализатора следующим образом. Установить параметры метода и серии измерений, как указано в п. 9.1.1. Установить в поле «Тип анализа» последовательности анализов тип вводимой пробы как «Проба». С помощью команды запуска измерения запустить многократное измерение, вводя в печь с помощью системы ввода жидких проб анализатора изооктан в качестве пробы.

Значение плотности, заданное в ПО multiWin, не влияет на результат промывки. При желании значение плотности изооктана, отличное от заданного в методе, может быть введено в ПО multiWin непосредственно перед запуском промывки.

Заданные в ПО multiWin холостые значения не влияют на результат промывки.

Данное измерение необходимо повторять до тех пор, пока получаемое в результате измерения значение интенсивности выходного сигнала, обозначенное в ПО multiWin как «Эффективный интеграл», не перестанет уменьшаться и станет стабильным. Если текущей серии измерений для этого недостаточно, запустить повторную серию измерений.

- 9.1.3. Для проведения дальнейших измерений установить параметры метода и серии измерений, как указано в п. 9.1.1. Установить в поле «Тип анализа» последовательности анализов тип вводимой пробы как «Проба». Установить разбавление 1 в 1 перед началом анализа, если требуется. Количество повторных измерений (определений) должно быть задано в методе или непосредственно перед началом серии измерений как 5-7 (минимальное количество повторных измерений 5, максимальное 7).
- 9.1.4. Только для Cl при использовании контрольного раствора, приготовленного путем разбавления: Провести не менее 5 раз измерение выходного сигнала для разбавителя, используя систему ввода жидких проб анализатора, вводя в качестве пробы изооктан эталонный, который применяется в качестве разбавителя для приготовления контрольного раствора (см. приложение 1). Пять значений интенсивности выходного сигнала для разбавителя, автоматически выбранных ПО multiWin по окончании измерения, использовать в дальнейшем в качестве величины $I_{pas6\,i}$ для расчета по формуле (1).

Учет выходного сигнала разбавителя требуется только при применении контрольных растворов, приготовленных путем разбавления из исходного стандартного образца. В случае использования стандартного образца, который не требует разбавления, и в паспорте которого указана массовая доля измеряемого элемента, измерение выходного сигнала для разбавителя не требуется.

9.1.5. Для TN и/или TS: Провести не менее 5 раз измерение выходного сигнала для жидкого стандартного образца, имеющего аттестованное значение массовой доли TN или TS в диапазоне от 3 млн⁻¹ до 8 млн⁻¹, используя систему ввода жидких проб анализатора.

Для Cl: Провести не менее 5 раз измерение контрольного раствора со следующей массовой долей хлора:

- Для ячейки «Высокочувствительная»: от 3 млн⁻¹ до 8 млн⁻¹;
- Для ячейки «Чувствительная»: от 300 млн⁻¹ до 800 млн⁻¹;
- Для ячейки «Для высоких концентраций»: от 3000 млн⁻¹ до 8000 млн⁻¹.

Для ввода контрольного раствора должна использоваться система ввода жидких проб анализатора.

Процедура измерения проводится для каждой из кулонометрических ячеек, входящих в комплект прибора.

Контрольные растворы для проведения поверки по хлору готовятся методом разбавления стандартного образца состава хлорбензола (рекомендуется ГСО 11533-2020) изооктаном эталонным. Процедура приготовления контрольных растворов приведена в приложении 1 к настоящей методике поверки.

Для ТС: Провести не менее 5 раз измерение жидкого стандартного образца состава изооктана (рекомендуется ГСО 7323-96), используя систему ввода жидких проб анализатора.

9.1.6. После завершения измерений провести расчет чувствительности анализатора согласно пп. 9.1.7, 9.1.8 и 9.1.9.

9.1.7. Только для Cl при использовании контрольного раствора, приготовленного путем разбавления: Рассчитать интенсивность выходного сигнала для разбавителя I_{pas6} . Рассчитать по формуле (1) среднее арифметическое значение I_{pas6} для 5 полученных значений интенсивности выходного сигнала для разбавителя (см. п. 9.1.4), выраженное в условных единицах (у.е., в ПО multiWin также обозначаются как «AU»). Значения интенсивности выходного сигнала для разбавителя I_{pas6} і берутся для расчета по формуле (1) из результатов измерения разбавителя (изооктана), находящихся в ПО multiWin или в распечатке отчета об анализе, как величина, имеющая обозначение «Эффективный интеграл». Для расчета в качестве I_{pas6} і принимаются пять значений величины «Эффективный интеграл», автоматически выбранных ПО multiWin.

$$I_{pa36} = \frac{\sum_{i=1}^{n} I_{pa36_i}}{n} , \qquad (1)$$

где: $I_{pas6\,i}$ – i-ое значение выходного сигнала для разбавителя в серии из 5 измерений, у.е.; n – число измерений, принятых для расчета (n = 5).

9.1.8. Рассчитать интенсивность выходного сигнала I по формуле (2) как разность среднего арифметического значения для 5 полученных значений интенсивности выходного сигнала для стандартного образца или контрольного раствора, выраженных в условных единицах (у.е., в ПО multiWin также обозначаются как «AU»), и интенсивности выходного сигнала для разбавителя, вычисленной по формуле (1). Значение I_{pas6} принимается равным нулю, если применяется стандартный образец с известной массовой долей элемента без разбавления (как для TN, TS, TC). Значения интенсивности выходного сигнала I_i берутся для расчета по формуле (2) из результатов измерения стандартного образца или контрольного раствора, находящихся в ПО multiWin или в распечатке отчета об анализе, как величина, имеющая обозначение «Эффективный интеграл». Для расчета в качестве I_i принимаются пять значений величины «Эффективный интеграл», автоматически выбранных ПО multiWin.

$$I = \frac{\sum_{i=1}^{n} I_i}{n} - I_{pas6} , \qquad (2)$$

где: I_i – i-ое значение выходного сигнала в серии из 5 измерений, у.е.;

n – число измерений, принятых для расчета (n = 5);

 I_{pa36} — интенсивность выходного сигнала для разбавителя, рассчитанная по формуле (1) или принятая равной нулю (см. выше), у.е.

Рассчитанное значение I использовать для расчета по формуле (3) согласно п. 9.1.9 в качестве параметра «Интенсивность выходного сигнала».

9.1.9. Рассчитать чувствительность S, выраженную в условных единицах на микрограмм, как интенсивность выходного сигнала на 1 мкг TN, или TS, или Cl, или TC по формуле (3):

$$S = \frac{I}{C \times V \times \rho} \ 10^3, \tag{3}$$

где: I – интенсивность выходного сигнала, вычисленная по формуле (1), у.е.;

C – паспортное или расчетное значение массовой доли TN, TS, Cl, TC в вводимом стандартном образце или стандартном растворе, млн⁻¹ или мг/кг;

V – объем вводимого стандартного образца или контрольного раствора, мкл;

 ρ – плотность вводимого стандартного образца или контрольного раствора, кг/л или г/см³.

- 9.2. Определение относительного СКО выходного сигнала.
- 9.2.1. Для расчета относительного СКО выходного сигнала используются те же 5 значений интенсивности сигнала I_i , которые использовались в расчете по формуле (2), п. 9.1.8.
 - 9.2.2. Рассчитать относительное СКО сигнала S_r , выраженное в %, по формуле (4):

$$S_r = \frac{100}{I} \sqrt{\frac{\sum_{i=1}^{n} (I - I_i)^2}{n - 1}},$$
(4)

где: I – среднее арифметическое результатов измерения выходного сигнала (параметр «Интенсивность выходного сигнала», рассчитанный по формуле (2));

 I_i – i-ое значение выходного сигнала в серии измерений;

n – число измерений, принятых для расчета (n = 5).

10. Подтверждение соответствия прибора метрологическим требованиям

10.1. Результаты поверки считаются положительными, если полученные значения чувствительности не ниже, а значения относительного СКО выходного сигнала не превышают значений, указанных в таблице 5.

Таблица 5 – Чувствительность и относительное СКО выходного сигнала

Определяемый элемент Детекто		Детектор	Чувствитель- ность, у.е./мкг, не менее	Относительное СКО выход- ного сигнала, %, не более
Общий азот (TN)	Хемилюминесцентный (N module 5100)		120 000	3,0
Общая сера (TS)	Флуоресцентный ультрафиолетовый (S module 5100)		60 000	3,0
	Кулонометри- ческий (Cl module 5100)	Кулонометрическая ячейка «высокочувстви- тельная (high sensitive, hs)»	350	5,0
Общий хлор (Cl)		Кулонометрическая ячейка «чувствительная (sensitive, s)»	0,5	5,0
		Кулонометрическая ячейка «для высоких кон- центраций (high concentra- tion, hc)»	0,5	5,0
Общий углерод (TC)	Инфракрасный (C module 5100)		400	5,0

11. Оформление результатов поверки

11.1. Данные, полученные при поверке, оформляются в форме протокола в соответствии с требованиями, установленными в организации, проводящей поверку.

- 11.2. Анализатор, удовлетворяющий требованиям настоящей методики поверки, признается годным к применению. Анализатор, не удовлетворяющий требованиям настоящей методики, не допускается к применению.
- 11.3. Результаты поверки анализатора подтверждаются сведениями о его поверке, включенными в Федеральный информационный фонд по обеспечению единства измерений.
 - 11.4. Знак поверки наносится на свидетельство о поверке (при оформлении).

Приготовление контрольных растворов

1. Основной раствор СІ № 1.

В мерную колбу объемом 100 мл налейте примерно 30 г изооктана. Затем добавьте примерно 1,099 г стандартного образца состава хлорбензола (рекомендуется ГСО 11533-2020). Запишите точное значение массы добавленного хлорбензола. Затем долейте изооктан до отметки 100 мл на колбе. Закройте колбу пробкой и хорошо перемешайте раствор. Рассчитайте концентрацию общего хлора $C_{CLN@I}$ в полученном основном растворе Cl N = 1, выраженную в млн⁻¹ (мг/кг) по следующей формуле (1):

$$C_{CUNel} = 3.15 \frac{C_{COCl} \times m}{\rho_{pa36}} , \qquad (1)$$

где 3,15 – коэффициент, выраженный в 1/см³;

 C_{COCI} – аттестованное значение массовой доли хлорбензола, взятое из паспорта на стандартный образец, выраженное в мг/г;

m — масса ГСО состава хлорбензола, добавленного в раствор, выраженная в Γ ; ρ_{pa36} — плотность разбавителя (изооктана), выраженная в Γ /см³.

Этот раствор следует плотно закрыть и хранить в темном прохладном месте. Срок годности раствора – 1 неделя.

2. Основной раствор Cl № 2.

Основной раствор Cl № 2 готовится из основного раствора Cl № 1 путем разбавления основного раствора Cl № 1 изооктаном в 10 раз. Концентрация общего хлора $C_{Cl№2}$ в контрольном растворе Cl № 2 рассчитывается по следующей формуле (2):

$$C_{ClN02} = 0,1 C_{ClN01}, \tag{2}$$

где 0,1 - коэффициент, не имеющий размерности;

 $C_{ClN₂l}$ – концентрация общего хлора в основном растворе Cl № 1, вычисленная по формуле (1).

Этот раствор следует плотно закрыть и хранить в темном прохладном месте. Срок годности раствора – 1 неделя.

3. Контрольный раствор Clhs для ячейки «высокочувствительная (high sensitive, hs)».

Поверочный раствор Cl_{hs} готовится из основного раствора Cl № 2 путем разбавления основного раствора Cl № 2 изооктаном в 100 раз. Концентрация общего хлора C_{Clhs} в контрольном растворе Cl_{hs} рассчитывается по следующей формуле (3):

$$C_{Clhs} = 0.001 \ C_{ClNol}$$
, (3)

где 0,001 - коэффициент, не имеющий размерности;

 C_{ClNol} – концентрация общего хлора в основном растворе Cl № 1, вычисленная по формуле (1).

Приблизительная номинальная концентрация общего хлора в контрольном растворе Cl_{hs} составляет 5 млн⁻¹ (мг/кг).

Этот раствор следует плотно закрыть и хранить в темном прохладном месте. Срок годности раствора – 1 сутки.

4. Контрольный раствор Cl_s для ячейки «чувствительная (sensitive, s)».

В качестве контрольного раствора для ячейки «чувствительная» используется основной раствор $Cl \ N\!\!\!\! \ge 2$ (см. $\pi.2$).

Приблизительная номинальная концентрация общего хлора в контрольном растворе Cl_s составляет 500 млн⁻¹ (мг/кг).

5. Контрольный раствор Clhc для ячейки «для высоких концентраций (high concentration, hc)».

В качестве контрольного раствора для ячейки «для высоких концентраций» используется основной раствор СІ № 1 (см. п.1).

Приблизительная номинальная концентрация общего хлора в контрольном растворе Cl_{hc} составляет 5000 млн⁻¹ (мг/кг).

Относительная погрешность массовой доли общего хлора в приготовленных контрольных растворах не превышает $\pm 2,0\%$.