СОГЛАСОВАНО

Генеральный директор ООО «СЕМ ТЕСТ ИНСТРУМЕНТ»

Ли Ланьшэн

ΜП.

«2» декабря 2018 г.

УТВЕРЖДАЮ

Заместитель директора «ВНИИМС»

по производственной метрологии

Иванникова

M.II.

% декабря 2018 г.

Измерители сопротивления изоляции цифровые серии DT

МЕТОДИКА ПОВЕРКИ

МП 206.1-241-2018

Настоящая методика распространяется на измерители сопротивления изоляции цифровые серии DT (далее по тексту-измерители), выпускаемые «SHENZHEN EVERBEST MACHINERY INDUSTRY CO., LTD», КНР, и устанавливает методы и средства первичной и периодической поверки.

На поверку представляют измеритель, укомплектованный в соответствии с руководством по эксплуатации, и комплект следующей технической и нормативной документации:

- руководство по эксплуатации;
- методика поверки.

Интервал между поверками – один год.

1 Операции поверки

1.1 При проведении поверки проводят операции, указанные в таблице 1.

Таблица 1 - Операции поверки

Операции поверки	Номер пункта	Проведение операций при поверке	
операции поверки	методики	первич-	периоди-
D	поверки	ной	ческой
Внешний осмотр	6.1	+	+
Опробование	6.2	+	+
Определение метрологических характеристик	6.3		
Определение допускаемой абсолютной основной погрешности измерений напряжения постоянного тока	6.3.1	+	+
Определение основной допускаемой абсолютной погрешности измерений напряжения переменного тока	6.3.2	+	+
Проверка диапазона выходного напряжения	6.3.3	+	+
Определение допускаемой абсолютной основной по- грешности измерений сопротивления изоляции	6.3.4	+	+
Определение допускаемой абсолютной основной по- грешности измерений электрического сопротивления участка цепи	6.3.5	+	+

- 1.2 При несоответствии характеристик поверяемых измерителей установленным требованиям по любому из пунктов таблицы 1, к дальнейшей поверке их не допускают и последующие операции не проводят, за исключением оформления результатов по п. 7.
- 1.3 Допускается возможность проведения периодической поверки измерителей для меньшего числа величин или на меньшем числе поддиапазонов измерений, по отношению к указанным в разделе «Метрологические и технические характеристики» Описания типа, на основании письменного заявления владельца средства измерений, оформленного в произвольной форме. Соответствующая запись должна быть сделана в свидетельстве о поверке измерителей.

2 Средства поверки

2.1 При проведении поверки измерителей должны быть применены основные и вспомогательные средства, указанные в таблице 2.

Таблица 2 - Основные и вспомогательные средства поверки

Наименование и тип сред- ства поверки	Метрологические характеристики
Калибратор универсальный Fluke 9100	Рег. №.25985-09

Продолжение таблицы 2

Наименование и тип сред- ства поверки	Метрологические характеристики
Магазин сопротивления P4830/1	Рег. № 4614-74 R (0,01-12222,21) Ом, кл. т. 0,05
Магазин сопротивления Р403	Рег. № 1347-70 R (0,1-1,0) МОм, кл.т. 0,05
Магазин сопротивлений высокоомный RCB-1	Рег. № 24500-03
Киловольтметр электростатический С511.	Рег. № 10194-85 Диапазон измерений напряжения по- стоянного и переменного тока (0,6-3) кВ. кл. т. 0,5
Киловольтметр электроста- тический С196.	Рег. № 2303-68, Пределы измерения напряжения постоянного и переменного тока 7,5; 15; 30 кВ. Кл. т.1,0
Вольтметр электростатиче- ский C508.	Рег. № 10194-8, Пределы измерения напряжения постоянного и переменного тока 7,5; 15; 30 кВ. Кл. т.1,05

<u>Примечание:</u> 1.Допускается применять другие средства поверки, метрологические и технические характеристики которых удовлетворяют требованиям поверочных схем на соответствующие виды измерений.

2.Все средства измерений должны быть поверены и иметь действующие свидетельства о поверке.

3 Требования к квалификации поверителей

К проведению испытаний допускаются лица, изучившие руководства по эксплуатации средства измерений и средств испытаний, прошедшие проверку знаний правил техники безопасности и эксплуатации электроустановок с напряжением свыше 1000 В и имеющие группу по электробезопасности не ниже III.

4 Требования безопасности

При проведении поверки должны быть соблюдены требования безопасности, указанные в эксплуатационных документах на средства поверки и поверяемые измерители.

5 Условия поверки и подготовка к ней

5.1 При проведении поверки должны соблюдаться следующие условия:

-	температура окружающей среды, °С	15-25;
-	относительная влажность воздуха, %	30-80;
=	атмосферное давление, кПа	84-106

- 5.2 Средства поверки подготавливают к работе согласно указаниям, приведенным в соответствующих эксплуатационных документах.
- Перед проведением поверки необходимо выдержать измерители в нормальных условиях не менее 2 часов.

6 Проведение поверки

6.1 Внешний осмотр

При проведении внешнего осмотра должно быть установлено соответствие поверяемых измерителей следующим требованиям:

- комплектность должна соответствовать указанной в руководстве по эксплуатации;
- не должно быть механических повреждений корпуса, органов управления,
 измерительных проводов;
- надписи должны быть четкими и ясными;
- все разъемы, клеммы и измерительные провода не должны иметь повреждений, следов окисления и загрязнений;
- переключатели и кнопки имеют четкую фиксацию;

внутри измерителя нет отсоединяющихся частей, обнаруживаемых на слух при опрокидывании измерителя.

При несоответствии по вышеперечисленным позициям поверку прекращают и измеритель бракуют.

6.2 Опробование.

Опробование измерителей осуществляется в следующей последовательности:

1) размещают измерители на удобном для проведения работ месте;

2) поочередно устанавливают поворотный переключатель в различные функциональные режимы в соответствии с руководством по эксплуатации.

Результаты испытаний считаются удовлетворительными, если органы индикации, управления работают в соответствии с руководством по эксплуатации.

При несоответствии по вышеперечисленным позициям поверку прекращают и измеритель бракуют.

- Определение метрологических характеристик. 6.3
- 6.3.1 Определение допускаемой абсолютной основной погрешности измерений напряжения постоянного тока проводят посредством калибратора универсального Fluke 9100 (далее - калибратор). Подключение измерителя и проведение измерений осуществляется в соответствии с руководством по эксплуатации измерителя и калибратора. Измерения проводят при значениях входного сигнала:

$$X_{1} = (0.05 - 0.1) \cdot X_{\kappa}; \ X_{2} = (0.2 - 0.3) \cdot X_{\kappa}; \ X_{3} = (0.4 - 0.6) \cdot X_{\kappa}; \ X_{4} = (0.7 - 0.8) \cdot X_{\kappa}, \ X_{5} = (0.9 - 1.0) \cdot X_{\kappa}; \ X_{8} = (0.4 - 0.6) \cdot X_{\kappa}; \ X_{8} = (0.7 - 0.8) \cdot X_{\kappa}; \ X_{8} = (0.9 - 0.8) \cdot X_{\kappa}; \ X_{9} = (0.9 - 0.8) \cdot X_{\kappa}; \ X_{1} = (0.9 - 0.8) \cdot X_{1} \cdot X_{1} \cdot X_{2} = (0.9 - 0.8) \cdot X_{1} \cdot X_{2} \cdot X_{3} = (0.9 - 0.8) \cdot X_{1} \cdot X_{2} = (0.9 - 0.8) \cdot X_{2} \cdot X_{3} = (0.9 - 0.8) \cdot X_{2} \cdot X_{3} = (0.9 - 0.8) \cdot X_{2} \cdot X_{3} = (0.9 - 0.8) \cdot X_{3} \cdot X_{3} =$$

где $X_{1,}$ $X_{2,}$ $X_{3,}$ $X_{4,}$ X_{5} – поверочные точки,

 X_{κ} – верхний предел измерений диапазона.

<u>Примечание</u>: для модификации DT-6605 $X_1 = X_{\text{мин}} = 1 \text{ B}$

Рассчитывают абсолютную погрешность измерений напряжения постоянного тока по формуле (1) во всех поверяемых точках и сравнивают с пределами допускаемой абсолютной погрешности, рассчитанными по формуле, приведенной в таблице 3.

$$\Delta = \mathbf{U}_{\text{H3M}} - \mathbf{U}_{9} \tag{1}$$

где $U_{\text{изм}}$ – показание поверяемого измерителя, В;

U_э – значение напряжения, воспроизводимое с калибратора, В.

Результаты поверки считаются удовлетворительными, если абсолютная погрешность измерений напряжения постоянного тока во всех поверяемых точках находится в пределах, рассчитанных согласно формул, приведенных в таблице 3.

Таблица 3 – Пределы допускаемой основной абсолютной погрешности измерений

напряжения постоянного тока

Модификация	Диапазон изме- рений, В	Значение единицы младшего разряда (k), В	Пределы допускаемой основной абсолютной погрешности измерений напряже-
DT-5500	от 10 до 1000	1	ния постоянного тока, В
DT-5505		1	$\pm (0.008 \cdot U_{\text{изм}} + 3 \cdot k)$
	от 10 до 1000	1	$\pm (0.008 \cdot U_{M3M} + 5 \cdot k)$
DT-6605	от 1 до 600	0,1	$\pm (0.01 \cdot U_{\text{M3M}} + 5 \cdot k)$

При невыполнении вышеуказанных требований поверку прекращают и измеритель бракуют.

6.3.2 Определение допускаемой абсолютной основной погрешности измерений напряжения переменного тока проводят посредством калибратора. Подключение измерителя и проведение измерений осуществляется в соответствии с руководством по эксплуатации измерителей и калибратора. Измерения проводят при значениях входного сигнала:

$$X_{1} = (0.05 - 0.1) \cdot X_{K}; X_{2} = (0.2 - 0.3) \cdot X_{K}; X_{3} = (0.4 - 0.6) \cdot X_{K}; X_{4} = (0.7 - 0.8) \cdot X_{K}, X_{5} = (0.9 - 1.0) \cdot X_{K}, X_{5} = (0.9 - 1.0) \cdot X_{K}$$

где $X_{1,}$ $X_{2,}$ $X_{3,}$ $X_{4,}$ X_{5} – поверочные точки,

 X_{κ} – верхний предел измерений диапазона (согласно таблице 4).

<u>Примечание</u>: для модификации DT-6605 $X_1 = X_{\text{мин}} = 10 \text{ B}$

Рассчитывают абсолютную погрешность измерений напряжения переменного тока по формуле (2) во всех поверяемых точках и сравнивают с пределами допускаемой абсолютной погрешности, рассчитанными по формуле, приведенной в таблице 4.

$$\Delta = U_{\text{H3M}} - U_{\text{9}} \tag{2}$$

где $U_{\text{изм}}$ – измеренное измерителем значение напряжения переменного тока, В U_э – значение напряжения, установленное на калибраторе, В

Примечание:

-напряжение переменного тока проверяют в указанном диапазоне частот (таблица 4) в пяти точках диапазона: $f_{\text{мин}};~(0,2\text{-}0,3)~f_{\text{макс}};~0,5\cdot f_{\text{макс}};~(0,7\text{-}0,8)\cdot f_{\text{макс}};~f_{\text{макс}}$.

Результаты поверки считаются удовлетворительными, если абсолютная погрешность измерений напряжения переменного тока во всех поверяемых точках в указанном диапазоне частот находится в пределах, рассчитанных согласно формул, приведенных в таблице 4.

Таблица 4. Пределы допускаемой основной абсолютной погрешности измерений напря-

жения переменного тока

Модифи- кация	Диапазон изме- рений, В	Диапазон частот, Гц	Значение единицы младшего разряда (k),	Пределы допускаемой основной абсолютной погрешности измерений напряжения переменного тока, В
DT-5500	от 10 до 750	40-400	1	+(0.012.11 +10.12
DT-5505	от 10 до 750	40-400	1	$\pm (0.012 \cdot U_{\text{изм}} + 10 \cdot k) \pm (0.012 \cdot U_{\text{изм}} + 10 \cdot k)$
DT-6605	от 10,0 до 600,0	40-60 61-400	0,1	$\pm (0.012 \cdot U_{\text{изм}} + 10 \cdot k)$ $\pm (0.01 \cdot U_{\text{изм}} + 5 \cdot k)$ $\pm (0.025 \cdot U_{\text{изм}} + 10 \cdot k)$

При невыполнении вышеуказанных требований поверку прекращают и измеритель бракуют.

- 6.3.3 Определение диапазона выходного напряжения проводят в следующей последовательности:
- изучают и подсоединяют испытываемый измеритель к измерительному входу эталонного киловольтметра согласно их РЭ (киловольтметр подбирают в зависимости от значений выходного напряжения);
- устанавливают поворотный переключатель режимов измерителя в режим измерения сопротивления изоляции согласно столбце 3 таблицы 5;
 - фиксируют значения выходного напряжения на эталонном киловольтметре.
- повторяют измерение, поочередно устанавливая поворотный переключатель режимов измерителя в положение, указанное в столбце 3 таблицы 5, для каждой модели измерителей.

Результаты испытаний считаются удовлетворительными, если значение выходного напряжения, контролируемое эталонным прибором, находится в диапазоне, указанном в столбце 2 таблицы 5.

Таблица 5

Модификация	Диапазон выходного напряжения, В	Положение поворотного переключателя
1	2	3
	250- 275	200 MΩ/250 V
DT-5500	500-550	200 MΩ/500 V
	1000-1100	2000 MΩ/1000 V
	125-137,5	125 V
DT-5505	250-275	250 V
D1-3303	500-550	500 V
	1000-1100	1000 V
DT-6605	500-600	MΩ 500 V
	1000-1200	$M\Omega$ 1000 V
	2500-3000	$G\Omega$ 2500 V
	5000-6000	GΩ 5000 V

При невыполнении вышеуказанных требований поверку прекращают и измеритель бракуют.

- 6.3.4 Определение допускаемой абсолютной основной погрешности измерений сопротивления изоляции проводят в следующей последовательности:
- изучают и подсоединяют испытываемый измеритель к магазину сопротивления согласно их РЭ;
- устанавливают поворотный переключатель режимов измерителей в режим измерения сопротивления изоляции;
 - измерения проводят на каждом диапазоне при значениях сопротивления:

$$X_1 = X_{\text{MHH}}; X_2 = (0,2-0,3) \cdot X_{\text{K}}; X_3 = (0,4-0,6) \cdot X_{\text{K}}; X_4 = (0,7-0,8) \cdot X_{\text{K}}, X_5 = (0,9-1,0) \cdot X_{\text{K}}, X_6 = (0,9-1,0) \cdot X_{\text{K}}$$

где $X_{1,}$ $X_{2,}$ $X_{3,}$ $X_{4,}$ X_{5} – поверочные точки,

 X_{κ} – верхний предел измерений каждого диапазона.

<u>Примечание:</u> в моделях DT-5505, DT-6605 пределы переключаются автоматически.

- измерения проводят при всех значениях выходного напряжения, указанных в столбце 3 таблицы 5. Значения выходного напряжения, отображаемые на дисплее испытываемого измерителя, должны находиться в пределах, указанных в столбце 2 таблицы 6.
- по окончание измерений отключают измеритель, переводя поворотный переключатель режимов в положение «OFF»;

Примечание:

- магазин сопротивления подбирают в соответствии с пределом измерения сопротивления и установленным значением выходного напряжения.
- рассчитывают абсолютную погрешность измерений сопротивления по формуле (3) и сравнивают с пределами, рассчитанными по формуле, приведенной в таблице 6.

$$\Delta = R_{\text{M3M}} - R_{\text{9}} \tag{3}$$

где $R_{\text{изм}}$ – показание испытываемого измерителя,

 $R_{\rm 3}$ — значение электрического сопротивления, установленное на магазине сопротивления, МОм, ГОм;

 $R_{\mbox{\tiny изм}}, \ \ R_{\mbox{\tiny 3}}$ имеют одинаковую размерность: МОм, ГОм.

Резульмамы испыманий счимаюмся удовлемворимельными, если абсолютная погрешность измерений сопротивления изоляции во всех проверяемых точках, рассчитанная по формуле (3), находится в пределах, рассчитанных по формуле, приведенной в столбце 5 таблицы 6, и значение выходного напряжения находится соответственно в диапазоне, указанном в столбце 2 таблицы 6.

Таблица 6

Таблица				
			Значение	Пределы допускаемо
Модифи-	Диапазон вы-		единицы	основной абсолют-
кация	ходного напря-	Диапазон измерений, МОм	младшего	ной,
	жения, В		разряда	погрешности измере
			(k), MO _M	ний сопротивления
1	2	3	4	изоляции, МОм
	от 250 до 275	от 0 до 200	0,1	$\pm (0.03 \cdot R_{\text{изм}} + 5 \cdot k)$
DT-5500	от 500 до 550	от 0 до 200	0,1	$\pm (0.03 \cdot R_{\text{M3M}} + 5 \cdot k)$ $\pm (0.03 \cdot R_{\text{M3M}} + 5 \cdot k)$
D1-3300	от 1000 до 1100	от 0 до 1000	1	V 22,000
	от 1000 до 1100	св. 1000 до 2000 включ	1	$\pm (0.03 \cdot R_{\text{M3M}} + 5 \cdot k)$
			0,001	$\pm (0.05 \cdot R_{\text{изм}} + 5 \cdot k)$
D	от 125 до 137,5	от 0,200 до 4,000 включ. св. 4,000 до 40,000		$\pm (0.02 \cdot R_{\text{изм}} + 10 \cdot k)$
DT-5505	от 125 до 157,5	от 4,00 до 400,00 включ.	0,01	$\pm (0.02 \cdot R_{\text{изм}} + 10 \cdot k)$
		св. 400 до 4000	0,1	$\pm (0.04 \cdot R_{\text{изм}} + 5 \cdot k)$
			1	$\pm (0.05 \cdot R_{\scriptscriptstyle H3M} + 5 \cdot k)$
		от 0,400 до 4,000 включ.	0,001	$\pm (0.02 \cdot R_{\text{\tiny M3M}} + 10 \cdot k)$
	от 250 до 275	св. 4,00 до 40,00	0,01	$\pm (0.02 \cdot R_{_{\text{ИЗM}}} + 1.0 \cdot k)$
		от 4,0 до 400,0 включ.	0,1	$\pm (0.03 \cdot R_{_{\text{ИЗM}}} + 5 \cdot k)$
		св. 400 до 4000	1	$\pm (0.04 \cdot R_{\scriptscriptstyle ИЗM} + 5 \cdot k)$
		от 0,500 до 4,000 включ.	0,001	$\pm (0.02 \cdot R_{\text{\tiny H3M}} + 10 \cdot k)$
	от 500 до 550	св.4,00 до 40,00	0,01	$\pm (0.02 \cdot R_{\text{изм}} + 10 \cdot k)$
		от 4,0 до 400,0 включ.	0,1	$\pm (0.02 \cdot R_{\text{\tiny MSM}} + 5 \cdot k)$
		св. 400 до 4000	1	$\pm (0.04 \cdot R_{\text{H3M}} + 5 \cdot k)$
		от 1,000 до 4,000 включ.	0,001	$\pm (0.03 \cdot R_{\text{M3M}} + 10 \cdot k)$
	от 1000 до 1100	св. 4,00 до 40,00 от 4,0 до 400,0 включ.	0,01	$\pm (0.02 \cdot R_{\text{изм}} + 10 \cdot k)$
	от 1000 до 1100		0,1	$\pm (0.02 \cdot R_{\text{M3M}} + 5 \cdot k)$
		св. 400 до 4000	1	$\pm (0.04 \cdot R_{\text{изм}} + 5 \cdot k)$
		от 0,400 до 6,000 включ.	0,001	$\pm (0.025 \cdot R_{\text{изм}} + 15 \cdot k)$
	500	св.6,00 до 60,00 включ.	0,01	$\pm (0.025 \cdot R_{\text{изм}} + 15 \cdot k)$
	от 500 до 600	св. 60,0. до 600,0 включ	0,1	$\pm (0.025 \cdot R_{\text{изм}} + 15 \cdot k)$
		св. 0,60 до 6,00 ГОм	0,01 ГОм	$\pm (0.03 \cdot R_{\text{изм}} + 15 \cdot k)$ $\pm (0.03 \cdot R_{\text{изм}} + 15 \cdot k)$
		от 1,000 до 6,000 включ.		
		св. 6,00 до 60,00 включ.	0,001	$\pm (0.025 \cdot R_{\text{изм}} + 15 \cdot k)$
	от 1000 до 1200		0,01	$\pm (0.025 \cdot R_{\text{изм}} + 15 \cdot k)$
DT 660 -		св. 60,0 до 600,0 включ	0,1	$\pm (0.025 \cdot R_{\text{изм}} + 15 \cdot k)$
DT-6605		св. 0,60 до 6,00 ГОм	0,01 ГОм	$\pm (0.03 \cdot R_{\text{изм}} + 15 \cdot k)$
		от 10,00 до 60,00 включ.	0,01	$\pm (0.025 \cdot R_{\text{изм}} + 5 \cdot k)$
	от 2500 до 3000	св. 60,0 до 600,0 включ.	0,1	$\pm (0.025 \cdot R_{\text{\tiny H3M}} + 15 \cdot k)$
		св. 0,60 до 6,00 ГОм включ.	0,01 ГОм	$\pm (0.03 \cdot R_{_{ИЗM}} + 1.5 \cdot k)$
		св. 6,0 до 60,0 ГОм	0,1 ГОм	$\pm (0.04 \cdot R_{_{M3M}} + 15 \cdot k)$
		от 10,00 до 60,00 включ.	0,01	$\pm (0.025 \cdot R_{\text{H3M}} + 15 \cdot k)$
	от 5000 до 6000	св. 60,0 до 600,0 включ.	0,1	$\pm (0.025 \cdot R_{\text{M3M}} + 15 \cdot k)$
		св. 0,60 до 6,00 ГОм включ.	0,01 ГОм	$\pm (0.03 \cdot R_{\text{M3M}} + 15 \cdot k)$
		св. 6,0 до 60,0 ГОм	0,1 ГОм	$\pm (0.04 \cdot R_{\text{M3M}} + 15 \cdot k)$

При невыполнении вышеуказанных требований поверку прекращают и измеритель бракуют.

- 6.3.5 Определение допускаемой абсолютной основной погрешности измерений электрического сопротивления участка цепи проводят следующим образом:
- изучают и подсоединяют испытываемый измеритель к магазину сопротивления (магазин сопротивления подбирают в соответствии с пределом измерения сопротивления) согласно их РЭ;
- - измерения проводят на каждом диапазоне при значениях сопротивления:

$$X_1 = (0.05 - 0.1) \cdot X_{\kappa}; X_2 = (0.2 - 0.3) \cdot X_{\kappa}; X_3 = (0.4 - 0.6) \cdot X_{\kappa}; X_4 = (0.7 - 0.8) \cdot X_{\kappa}, X_5 = (0.9 - 1.0) \cdot X_{\kappa}, X_{\kappa} = (0.9 - 0.8) \cdot X_{\kappa}$$

где $X_{1,}$ $X_{2,}$ $X_{3,}$ $X_{4,}$ X_{5} – поверочные точки,

 X_{κ} – верхний предел измерений каждого диапазона.

<u>Примечание:</u> в моделях DT-5505, DT-6605 пределы переключаются автоматически.

- по окончание измерений отключают измеритель, переводя поворотный переключатель режимов в положение «OFF»;
- рассчитывают абсолютную погрешность измерений электрического сопротивления во всех поверяемых точках по формуле (3) и сравнивают с пределами допускаемой абсолютной погрешности, рассчитанными по формуле, приведенной в таблице 7.

$$\Delta = R_{\text{M3M}} - R_9 \tag{3}$$

где $R_{\text{изм}}$ – показание поверяемого измерителя, O_{M} , κO_{M} ;

 R_3 — значение электрического сопротивления, установленное на магазине сопротивления, Ом, кОм;

 $R_{\text{изм}}$, $R_{\text{э}}$ имеют одинаковую размерность: Ом, кОм.

Результаты поверки считаются удовлетворительными, если абсолютная погрешность измерений электрического сопротивления во всех поверяемых точках находится в пределах, рассчитанных согласно формул, приведенных в таблице 7.

Таблица 7

Модифи-	Диапазон измерений, Ом,	Значение	
кация	кОм	единицы	Пределы допускаемой основной
		младшего	абсолютной погрешности изме-
		разряда	рений электрического сопротив-
		(k), OM,	ления, Ом, кОм
		кОм	
DT-5500	от 1,0 до 200,0 Ом включ.	0,1 Ом	$\pm (0.01 \cdot R_{\text{изм}} + 2 \cdot k)$
	св. 0,2 до 200,0 кОм	0,1 кОм	$\pm (0.01 \cdot R_{\text{M3M}} + 2 \cdot k)$
DT-5505	от 1,00 до 40 Ом	0,01 Ом	
	от 1,0 до 400 Ом	0,1 Ом	$\pm (0.012 \cdot R_{\text{\tiny M3M}} + 3 \cdot k)$
DT-6605	от 0,1 до 600,0 Ом включ.	0,1 Ом	$\pm (0.015 \cdot R_{\text{M3M}} + 10 \cdot k)$
2. 0003	св. 0,600 до 6,000 кОм	0,001 кОм	$\pm (0.015 \cdot R_{\text{изм}} + 15 \cdot k)$

При невыполнении вышеуказанных требований поверку прекращают и измерители бракуют.

7 Оформление результатов поверки

7.1 Положительные результаты поверки удостоверяют знаком поверки и (или) свидетельством о поверке согласно Приказу Минпромторга России №1815 от 2 июля 2015 г. "Об утверждении порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке".

7.2 При отрицательных результатах свидетельство о поверке аннулируется и выписывается извещение о непригодности к применению, измеритель к применению не допускается.

Element of

Ведущий инженер отдела 206.1

ФГУП «ВНИИМС»

Начальник отдела 206.1 ФГУП «ВНИИМС» Е.Б. Селиванова

С.Ю. Рогожин