УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «11» апреля 2022 г. № 928

Лист № 1 Всего листов 9

Регистрационный № 85246-22

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматического измерения выбросов загрязняющих веществ в атмосферу АСИВ Челябинской ТЭЦ-4

Назначение средства измерений

Система автоматического измерения выбросов загрязняющих веществ в атмосферу АСИВ Челябинской ТЭЦ-4 (далее – АСИВ), предназначена для:

- непрерывных автоматических измерений массовой концентрации оксида углерода (CO), суммы оксидов азота (NO_x), объемной доли кислорода (O₂), диоксида углерода (CO₂), паров воды (H_2O);
- измерения параметров (температура, давление, скорость, объемный расход) газового потока;
- сбора, обработки, визуализации, хранения полученных данных, представления результатов в различных форматах;
- передачи по запросу накопленной информации на внешний удаленный сервер АСИВ ИВК Дельта/8 по проводному каналу связи;
 - расчета и учета массовых и валовых выбросов загрязняющих веществ.

Описание средства измерений

Принцип действия системы основан на следующих методах измерения:

- 1) для определяемых компонентов NO_x, CO, CO₂ фотометрический метод;
- 2) для определяемого компонента O_2 парамагнитный;
- 3) температуры терморезистивный;
- 4) давления резонансночастотный;
- 5) скорость потока по перепаду давления;
- 6) объемная доля паров воды психрометрический.

Система является стационарной и состоит из трех уровней:

- уровня первичных средств измерений, точки измерения (ПИ);
- уровень сбора и передачи данных, каналы АСУТП АВВ энергоблоков (УСПД);
- уровня информационно-вычислительного комплекса (ИВК).

Связь между ПИ и УСПД осуществляется по токовому интерфейсу (4-20) мА через модули ввода AI810 (регистрационный номер 26156-08). Текущие измеренные значения от УСПД в ИВК передаются через станционную компьютерную сеть Ethernet, протокол ОРС. Передача данных по цифровым интерфейсам осуществляется без искажений передаваемой информации.

Уровень ПИ включает в себя следующие средства измерений:

- комплекс газоаналитический SERVOPRO 4900 (регистрационный номер 53156-13);
- измеритель скорости потока D-FL 100 (регистрационный номер 18069-12);

- термопреобразователь с унифицированным сигналом ТСПУ-Л-22322 (регистрационный номер 40903-09);
- преобразователь давления измерительный EJX530A (регистрационный номер 59868-15);
- анализатор влажности HYGROPHIL H.

АСИВ представляет собой единичный экземпляр системы измерительной, спроектированной для конкретного объекта из компонентов отечественного и импортного изготовления. Монтаж и наладка АСИВ осуществлены непосредственно на объекте эксплуатации в соответствии с проектной документацией АСИВ и эксплуатационными документами ее компонентов.

Измерение содержания веществ в АСИВ состоит из следующих этапов: первичная подготовка пробы, транспортировка пробы, анализ пробы, обработка результатов анализа.

Первичная подготовка пробы заключается в очистке газовой пробы от частиц механических примесей.

Компрессор блока подготовки пробы создает разрежение в газовом тракте, анализируемая проба через пробоотборный зонд, подогреваемый керамический фильтр и клапаны управления поступает через линию транспортировки пробы на газоаналитический комплекс.

Температура подогреваемой линии транспортирования поддерживается в диапазоне от 118 °C до 121 °C для предотвращения образования конденсата.

Проба поступает в комплекс газоаналитический SERVOPRO 4900, который непрерывно измеряет содержание кислорода O_2 , оксида углерода CO, диоксида углерода CO_2 и суммы оксидов азота NO_x в пробе.

Результаты анализа пробы (концентрации CO, CO₂, O₂, NO_x) передаются токовыми сигналами 4-20 мА в модули аналогового ввода AI810 АСУТП энергоблоков, где аналоговые сигналы преобразуется в цифровое текущее значение измеряемой физической величины.

Уровень ПИ осуществляет следующие функции:

- измерение массовой концентрации и объемной доли определяемых компонентов;
- измерение параметров (температура, абсолютное давление, объёмный расход) дымовых газов.

Уровень УСПД обеспечивает измерение аналоговых унифицированных сигналов, выдаваемых ПИ, преобразование в цифровой код, регистрацию измеренных значений в виде трендов и передачу текущих значений по стандартному цифровому интерфейсу на уровень ИВК.

Текущие измеренные значения от УСПД в ИВК передаются через станционную компьютерную сеть Ethernet, протокол ОРС. Передача данных по цифровым интерфейсам осуществляется без искажений передаваемой информации.

Уровень ИВК обеспечивает автоматический сбор, диагностику и автоматизированную обработку информации по анализу дымовых газов в сечении газохода, автоматизированный сбор и обработку информации, а также обеспечивает интерфейс доступа к этой информации и ее использование для реализации расчетных задач АСИВ.

Опломбирование производится путем наклеивания «пломбы-стикера» на лицевую панель газоанализаторов SERVOPRO 4900, входящих в состав системы. Ограничение доступа осуществляется с помощью механического замка.

Заводской номер системы наносится с помощью наклейки на верхнюю часть дверцы каждого из трех комплексов газоаналитических SERVOPRO 4900, входящих в состав системы.

Общий вид оборудования системы представлен на рисунках 1-5.

Ограничение доступа с помощью замка

Рисунок 1 – Общий вид комплекса газоаналитического SERVOPRO 4900

Рисунок 2 — Общий измерителя скорости потока D-FL 100

Рисунок 3 — Общий вид термопреобразователя с унифицированным сигналом $TC\Pi Y$ - Π -22322

Рисунок 4 – Общий вид преобразователя давления измерительного ЕЈХ530А

Место наклеивания «пломбы-стикера» на газоанализатор SERVOPRO 4900

Рисунок 5 – Внутренний вид комплекса газоаналитического SERVOPRO 4900

Программное обеспечение

Программное обеспечение системы состоит из модулей:

- встроенное программное обеспечение;
- автономное программное обеспечение;

Встроенное программное обеспечение осуществляет следующие функции:

- прием, регистрация данных о параметрах отходящего газа и передачу их в АСУ ТП ABB. Автономное ПО осуществляет функции:
- отображение на экране измеренных значений концентрации определяемых компонентов и значений параметров газового потока;
- регистрация в системе автоматического контроля (далее CAK) по каждой дымовой трубе нарастающим итогом периода остановки работы САК с исключением периодов остановки работы технологического оборудования соответствующего энергоблока;
- усреднение измеренных данных на 30 минутном интервале с возможностью выбора периода усреднения с дискретностью 1 минута;
 - архивация (сохранение) измеренных и расчетных данных;
 - визуализация процесса на дисплеях;
- поддержка многопользовательского, многозадачного непрерывного режима работы в реальном времени;
- регистрация и документирование событий, ведение оперативной БД параметров режима, обновляемой в темпе процесса;
- контроль состояния значений параметров, формирование предупреждающих и аварийных сигналов;
- дополнительная обработка информации, расчеты, автоматическое формирование отчетов и сохранение их на жесткий диск APM;
 - автоматическая самодиагностика состояния технических средств, устройств связи.

Метрологические характеристики системы нормированы с учетом влияния программного обеспечения.

Влияние встроенного ПО учтено при нормировании метрологических характеристик системы. Уровень защиты — «средний» по Р 50.2.077-2014.

Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1 - Идентификационные данные программного обеспечения

И польтурителино поли то (примени)	Значения	
Идентификационные данные (признаки)	Автономное ПО системы	
Идентификационное наименование ПО	d8_params_calc.config.xml	
Номер версии (идентификационный номер)		
ПО	-	
Цифровой идентификатор ПО	9263d59c	
Алгоритм расчёта цифрового идентификатора ПО	CRC32	

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики газоаналитических каналов АСИВ в условиях эксплуатации

Измеритель- ный канал заний объемной		Диапазон измерений объемной доли, млн ⁻¹	Пределы допускаемой погрешности в условиях эксплуатации ¹⁾ , %	
(определяемый компонент)	доли, млн ⁻¹ (%)		приведенной ²⁾	относительной
Оксид углерода	Оксид углерода СО от 0 до 500	от 0 до 100 включ.	±20	_
CO		св. 100 до 500	_	±20
Сумма оксидов азота NO _x	ота IO _х от 0 до 500	от 0 до 100 включ.	±25	-
(в пересчете на NO)		св. 100 до 500	_	±25
Диоксид угле-	om 0 ma 5 0/	от 0 до 1 % включ.	±20	_
рода CO ₂	рода от 0 до 5 % - СО ₂	св. 1 до 5 %	_	±20
Кислород	от 0 до 25 %	от 0 до 5% включ.	±15	_
О2	св. 5 до 25 %	_	±15	
Пары воды Н ₂ О от 0 до 40 %	от 2 до 10% включ.	±25	_	
	св. 10 до 40 %		±25	

¹⁾ В соответствии с Постановлением Правительства РФ от 16.11.2020 г. № 1847, п. 3.1.3;

Таблица 3 – Метрологические характеристики измерительных каналов системы

Наименование характеристики	Значение
Предел допускаемой вариации показаний, в долях от предела допускаемой погрешности	0,3
Пределы допускаемого изменения выходного сигнала за 24 ч непрерывной работы, в долях от пределов допускаемой погрешности	±0,5
Предел допускаемого времени установления выходного сигнала $(T_{0,9})$, с (время одного цикла без учета транспортного запаздывания)	180

²⁾ Приведенная к верхней границе диапазона измерений, в котором нормирована погрешность.

Таблица 4 — Метрологические характеристики для измерительных каналов параметров газового потока в условиях эксплуатации

Измерительный канал	Единицы	Диапазон	Пределы допускаемой
измерительный канал	измерений	измерений	погрешности
Температура	°C	от 0 до +400	±1 % (прив) ¹⁾
Избыточное давление	мбар	от -100 до 100	±2,5 % (прив)
Скорость газового потока	м/с	от 3 до 40	±0,4 (абс.)
Объемный расход газового по- тока	м ³ /ч	от 0,0 до 3,0·10 ⁶	$\pm \left(\sqrt{\left(\frac{40}{V}\right)^2 + (\delta S)^2}\right) \%$ (OTHOC.) ²⁾

¹⁾ Приведенные к верхнему пределу диапазона измерений;

Таблица 5 – Основные технические характеристики

Параметр	Значение
Время прогрева, мин, не более	60
Напряжение питания от сети переменного тока частотой 50/60 Гц, В	от 207 до 253
Потребляемая мощность шкафа анализатора системы, В А, не более	1450
Габаритные размеры, мм, не более: - газоаналитического шкафа SERVOPRO 4900	
глубина	800
ширина	1000
высота	2000
Масса, кг, не более: - газоаналитического шкафа SERVOPRO 4900	350
Средняя наработка на отказ (при доверительной вероятности $P=0,95$), ч	40000
Средний срок службы, лет	15
Условия окружающей среды	
диапазон температуры, °С	от -45 до +55
диапазон атмосферного давления, кПа	от 84 до 106,7
относительная влажность (при температуре 35 °C и (или) более низких температурах), % (отн.)	от 30 до 98
Условия эксплуатации (для газоаналитического комплекса и кон-	
троллерного оборудования):	
диапазон температуры, °С	от +0 до +40
относительная влажность (без конденсации влаги), % (отн.)	до 95

 $^{^{2)}}$ V – скорость газового потока м/с, δS – относительная погрешность измерения площади сечения дымовой трубы.

Продолжение таблицы 5

Параметр	Значение
диапазон атмосферного давления, кПа	от 84 до 106,7
Параметры анализируемого газа на входе газоанализатора:	
- температура, не более, о С;	125

Знак утверждения типа

наносится на титульный лист Руководства по эксплуатации типографским методом.

Комплектность средства измерений

Таблица 6 – Комплектность системы

Наименование	Обозначение	Количество
Система автоматического измерения выбросов		
загрязняющих веществ в атмосферу АСИВ Че-	Зав. № 1	1 шт.
лябинской ТЭЦ-4 в составе:		
Преобразователь давления измерительный	EJX530A	3 шт.
EJX530A	LJAJJOA	Э Ш1.
Термопреобразователь с унифицированным	ТСПУ-Л-22322	3 шт.
сигналом ТСПУ-Л-22322	10119-31-22322	3 ш1.
Измеритель скорости потока D-FL 100	D-FL 100	3 комплект
Газоаналитический комплекс SERVOPRO 4900	SERVOPRO 4900	3 комплект
Шкаф модулей аналогово ввода	-	3 шт.
Документация:		
Руководство по эксплуатации	РЭ АСИВ ЧТЭЦ-4	1 экз.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе РЭ АСИВ ЧТЭЦ-4 «Система автоматического измерения выбросов загрязняющих веществ в атмосферу АСИВ Челябинской ТЭЦ-4. Руководство по эксплуатации», пп. 3.2 - 3.6

Нормативные и технические документы, устанавливающие требования к системе автоматического измерения выбросов загрязняющих веществ в атмосферу АСИВ Челябинской ТЭЦ-4

Постановление Правительства Российской Федерации от 16.11.2020 № 1847 «Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений», п. 3.1.3

ГОСТ Р 50759-95 «Анализаторы газов для контроля промышленных и транспортных выбросов. Общие технические условия»

ГОСТ Р 52931-2008 «Приборы контроля и регулирования технологических процессов. Общие технические условия»

Приказ Росстандарта от 31.12.2020 № 2315 «Об утверждении Государственной поверочной схемы для средств измерений содержания компонентов в газовых и газоконденсатных средах»

ГОСТ 8.558-2009 «ГСИ. Государственная поверочная схема для средств измерений температуры»

Приказ Росстандарта от 06.12.2019 № 2900 «Об утверждении Государственной поверочной схемы для средств измерений абсолютного давления в диапазоне $1\cdot10^{-1}$ - $1\cdot10^{7}$ Па»

Приказ Росстандарта от 25.11.2019 № 2815 «Об утверждении Государственной поверочной схемы для средств измерений скорости воздушного потока»

ГОСТ Р 8.958-2019 «ГСИ. Наилучшие доступные технологии. Автоматические измерительные системы для контроля вредных промышленных выбросов. Методы и средства испытаний»

Постановление Правительства Российской Федерации от 13.03.2019 № 262 «Об утверждении Правил создания и эксплуатации системы автоматического контроля выбросов загрязняющих веществ и (или) сбросов загрязняющих веществ»

Постановление Правительства Российской Федерации от 13.03.2019 № 263 «О требованиях к автоматическим средствам измерения и учета показателей выбросов загрязняющих веществ и (или) сбросов загрязняющих веществ, к техническим средствам фиксации и передачи информации о показателях выбросов загрязняющих веществ и (или) сбросов загрязняющих веществ в государственный реестр объектов, оказывающих негативное воздействие на окружающую среду»

Техническая документация изготовителя

Изготовитель

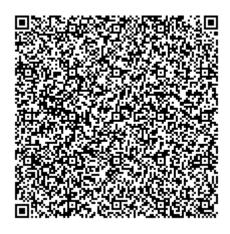
Общество с ограниченной ответственностью «НТЦ «Комплексные системы» (ООО «НТЦ «КС») ИНН 7451076950

Адрес: 454106, РФ, г. Челябинск, улица Косарева, дом 18

Телефон: +7 (351) 225 38 45

Web-сайт: www.complexsystems.ru E-mail: sales-cs@complexsystems.ru

Испытательный центр


Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева»

Адрес: 190005, г. Санкт-Петербург, Московский пр., 19

Телефон: (812) 251-76-01 Факс: (812) 713- 01-14 Web-сайт: www.vniim.ru E-mail: info@vniim.ru

Уникальный номер записи об аккредитации в реестре аккредитованных лиц

RA.RU.311541

