УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «6» апреля 2022 г. № 870

Регистрационный № 85166-22

Лист № 1 Всего листов 5

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Рабочий эталон единиц длины и ослабления в световоде

Назначение средства измерений

Рабочий эталон единиц длины и ослабления в световоде (далее — эталон) предназначен для воспроизведения и передачи единиц длины и ослабления в световоде при поверке и калибровке оптических рефлектометров.

Описание средства измерений

Принцип действия эталона основан на формировании оптических импульсов с заданными значениями длительности и задержки по отношению к импульсу, генерируемому оптическим рефлектометром. При этом амплитуда импульсов регулируется с помощью встроенных аттенюаторов, а ее изменение регистрируется измерительным оптическим приемником. В ответ на каждый импульс, пришедший от поверяемого оптического рефлектометра, генератор оптический из состава эталона (далее – генератор) выдает импульс с заданной задержкой и амплитудой, который принимается рефлектометром и отображается на его экране. Величины задержек и длительностей импульсов задаются в управляющей программе генератора. Генератор работает в режимах воспроизведения значений длины оптического волокна (результат пересчета значений временных интервалов между генерируемыми оптическими импульсами) и воспроизведения уровней ослабления. Поверяемый оптический рефлектометр соединяется с генератором одномодового оптического соединительного кабеля, входящего в комплект поставки эталона. Проверка динамического диапазона оптического рефлектометра производится путем определения диапазона от максимума до уровня шумов на получаемой рефлектограмме при подключении к рефлектометру оптического волокна.

В состав эталона входят:

- генератор оптический модели ОГ-2-4;
- катушка с одномодовым оптическим волокном (9/125 мкм) длиной 50 км;
- катушка с многомодовым оптическим волокном (50/125 мкм) длиной 10 км.

Конструктивно генератор выполнен в прямоугольном металлическом корпусе настольно-переносного типа, а одномодовое и многомодовое оптическое волокно намотаны на стандартные катушки и оконцованы разъемами FC.

Управление работой генератора осуществляется с помощью персонального компьютера, подключаемого через порт USB с помощью интерфейсного кабеля, входящего в комплект поставки.

Заводской номер эталона наносится печатным способом на заднюю панель корпуса генератора.

Общий вид эталона, схема пломбировки от несанкционированного доступа, обозначения мест нанесения маркировки представлены на рисунках 1 и 2.

По заявлению владельца эталона или лица, представившего его на поверку, на переднюю панель генератора наносится знак поверки.

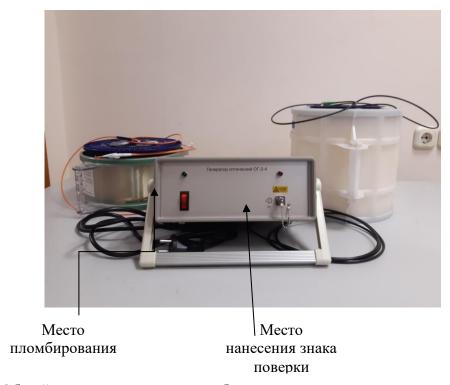


Рисунок 1 — Общий вид эталона, схема пломбировки от несанкционированного доступа, обозначения места нанесения знака поверки

Рисунок 2 – Обозначение места нанесения заводского номера

Программное обеспечение

Программное обеспечение «OptiGen» (далее - Π O), входящее в состав эталона, выполняет функции установки параметров измерений, сбора и отображения измерительной информации в цифровом виде на экране Π K. Π O разделено на метрологически значимую часть, которая записана в памяти микроконтроллера генератора оптического и интерфейсную часть, которая запускается на Π K и служит для отображения, обработки и сохранения результатов измерений. Метрологически значимая часть Π O защищена от несанкционированного доступа путем пломбирования в области крепежных винтов корпуса генератора оптического.

Идентификационные данные ПО приведены в таблице 1.

Уровень защиты программного обеспечения «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	OptiGen	
Номер версии (идентификационный номер) ПО	1.0 и выше	
Цифровой идентификатор ПО	-	
Другие идентификационные данные (если имеются)	-	

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики эталона

Наименование характеристики	Значение	
Рабочие длины волн оптического излучения, нм	850±20, 1300±20,	
	1310±20, 1490±20,	
	1550±20, 1625±20	
Диапазон воспроизведения длины (расстояния), км	от 0,06 до 600	
Пределы допускаемой абсолютной погрешности		
воспроизведения длины (расстояния), м	$\pm (0,1+3\cdot 10^{-6}\cdot L)*$	
Диапазон измерений ослабления оптического излучения, дБ	от 0,5 до 25	
Пределы допускаемой абсолютной погрешности измерений		
ослабления оптического излучения, дБ	±0,015·A**	

^{*} где L- значение воспроизводимой длины, м;

^{**} где А-измеряемое ослабление, дБ.

Таблица 3 – Основные технические характеристики эталона

Наименование характеристики	Значение	
Габаритные размеры, мм, не более		
- генератор оптический ОГ-2-4 (длина×ширина×высота)	320×292×118	
- катушка с одномодовым оптическим волокном (9/125 мкм)		
длиной 50 км (диаметр×высота)	330×240	
- катушка с многомодовым оптическим волокном (50/125 км)		
длиной 10 км (диаметр×высота)	330×140	
Масса, кг, не более		
- генератор оптический ОГ-2-4	3,5	
- катушка с одномодовым оптическим волокном (9/125 мкм)		
длиной 50 км	5,0	
- катушка с многомодовым оптическим волокном (50/125 км)		
длиной 10 км	2,0	
Условия эксплуатации:		
Диапазон температур окружающей среды, °С	от +15 до +30	
Диапазон относительной влажности воздуха при 20°C, %	от 20 до 80	
Диапазон атмосферного давления, кПа	от 84,0 до 106,7	

Знак утверждения типа

наносится на титульный лист Руководства по эксплуатации эталона печатным способом.

Комплектность средства измерений

Таблица 4 - Комплектность средства измерений

Наименование	Обозначение	Количество
Рабочий эталон единиц длины и ослабления в		
световоде:		
Генератор оптический ОГ-2-4	-	1 шт.
Катушка с одномодовым оптическим волокном		
(9/125 мкм) длиной 50 км	-	1 шт.
Катушка с многомодовым оптическим волокном		
(50/125 км) длиной 10 км	-	1 шт.
Кабель оптический соединительный FC/UPC –	-	
FC/APC		1 шт.
Кабель интерфейсный USB-A – USB-B	-	1 шт.
Сетевой шнур	-	1 шт.
Флеш-накопитель с программным обеспечением	-	1 шт.
Руководство по эксплуатации	-	1 экз.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе (раздел 8 «Работа с генератором и проведение измерений» Руководства по эксплуатации эталона).

Нормативные и технические документы, устанавливающие требования к эталону

Приказ Федерального агентства по техническому регулированию и метрологии от 05.12.19 № 2862 Об утверждении государственной поверочной схемы для средств измерений длины и времени распространения сигнала в световоде, средней мощности, ослабления и длины волны оптического излучения для волоконно-оптических систем связи и передачи информации

Техническая документация ООО «НПК «СвязьСервис», Россия

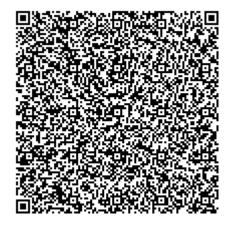
Изготовитель

Общество с ограниченной ответственностью «Научно-производственная компания «СвязьСервис» (ООО «НПК «СвязьСервис»), Россия

Адрес: 192012, г. С.-Петербург, пр. Обуховской Обороны, д. 112, кор. 2, лит И, оф. 630 (Б/Ц Вант), Россия

ИНН: 7811499993

Телефон: +7 (812) 346-90-87 E-mail: org@comm-serv.ru Web-сайт: www.comm-serv.ru


Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт оптико-физических измерений»

Адрес: 119361, Россия, г. Москва, ул. Озерная, д. 46

Телефон: +7 (495) 437-56-33 Факс: +7 (495) 437-31-47 E-mail: vniiofi@vniiofi.ru Web-сайт: www.vniiofi.ru

Аттестат аккредитации ФГУП «ВНИИОФИ» по проведению испытаний средств измерений в целях утверждения типа № 30003-2014 от 23.06.2014 г.

