УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «30» мая 2022 г. № 1314

Лист № 1 Всего листов 6

Регистрационный № 75036-19

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Весы неавтоматического действия HV/W-KC, HV/W-KCP

Назначение средства измерений

Весы неавтоматического действия HV/W-KC, HV/W-KCP (далее — средство измерений) предназначены для измерений массы.

Описание средства измерений

Принцип действия средства измерений основан на использовании гравитационного притяжения. Сила тяжести объекта измерений вызывает деформацию чувствительного элемента средства измерений, которая преобразуется им в аналоговый электрический сигнал, пропорциональный массе объекта измерений. Этот сигнал подвергается аналого-цифровому преобразованию, математической обработке электронными устройствами средства измерений с дальнейшим определением значения массы объекта измерений. Результаты измерений отображаются в визуальной форме на дисплее.

Средство измерений представляет собой весы неавтоматического действия по ГОСТ OIML R 76–1—2011, имеет модульную конструкцию и состоит из грузоприемного устройства (далее — $\Gamma\Pi Y$) и индикатора (по T.2.2.2 Γ OCT OIML R 76–1—2011), закреплённого на стойке.

ГПУ представляет собой металлическую конструкцию в виде платформы для принятия нагрузки, опирающуюся на весоизмерительные тензорезисторные датчики (далее — датчики).

Сигнальные кабели датчиков подключаются к индикатору.

Общий вид средства измерений представлен на рисунке 1.

Схема пломбировки от несанкционированного доступа представлена на рисунке 2.

Нанесение знака поверки на средство измерений не предусмотрено.

Для защиты от несанкционированного доступа к внутренним частям средства измерений и изменений параметров их настройки и регулировки используется пломбировка свинцовой пломбой переключателя настройки, расположенного внутри корпуса индикатора.

Средство измерений выпускается в различных модификациях, отличающихся метрологическими и техническими характеристиками (таблицы 2-3), особенностями конструкции и имеют обозначения вида:

H[1]-[2]KC[3]

Где:

[1] — режим работы:

V: многоинтервальные весы; W: однодиапазонные весы;

[2] — обозначение максимальной нагрузки Мах для однодиапазонных весов или Мах₃ для многоинтервальных весов:

10: 10 кг;

15: 15 кг;

60: 60 кг;

200: 220 кг;

[3] — наличие встроенного принтера или отсека для автономных источников питания постоянного тока:

P: принтер, встроенный в индикатор, отсутствие индекса означает отсутствие принтера и наличие на его месте отсека для установки автономных источников питания постоянного тока.

Весы снабжены следующими устройствами и функциями (в скобках указаны соответствующие пункты ГОСТ OIML R 76-1–2011):

- полуавтоматическое устройство установки на нуль (Т.2.7.2.2);
- устройство первоначальной установки на нуль (Т.2.7.2.4);
- устройство слежения за нулем (Т.2.7.3);
- устройство уравновешивания тары устройство выборки массы тары (Т.2.7.4.1);
- устройство предварительного задания значения массы тары (Т.2.7.5);
- многоинтервальные весы (только для модификаций HV) (Т.3.2.6).

Весы имеют следующие режимы работы (4.20 ГОСТ OIML R 76-1-2011):

- счетный режим;
- суммирование;
- вычисление процентных соотношений;
- режим сравнения.

Весы оснащены последовательным интерфейсом передачи данных RS232C и USB (опция).

модификации с отсеком для установки автономных источников питания постоянного тока

модификации с принтером, встроенным в индикатор

Рисунок 1 — Общий вид средства измерений

Рисунок 2 — Схема пломбировки от несанкционированного доступа

Маркировка весов производится на фирменных наклейках (табличках), которые содержат следующие сведения:

- торговая марка изготовителя;
- модификация весов;
- максимальная нагрузка (Мах);
- минимальная нагрузка (Min);
- действительная цена деления (шкалы) (d);
- поверочный интервал (e);
- класс точности весов;
- знак утверждения типа;
- заводской (серийный) номер;
- год изготовления;
- диапазон температуры.

Программное обеспечение

Программное обеспечение (далее $-\Pi O$) средства измерений является встроенным, используется в стационарной (закрепленной) аппаратной части.

Защита от несанкционированного доступа к настройкам и данным измерений обеспечивается защитной пломбой, которая ограничивает доступ к переключателю настройки и регулировки индикатора средства измерений. Изменение метрологически значимых параметров, настройка и регулировка не могут быть осуществлены без нарушения защитной пломбы, вскрытия корпуса и изменения положения переключателя настройки и регулировки.

Изменение ПО через интерфейс пользователя невозможно. Кроме того, изменение ПО невозможно без применения специализированного оборудования производителя.

Защита ПО от преднамеренных и непреднамеренных воздействий соответствует уровню «высокий» по Р 50.2.077-2014. Идентификационные данные ПО (таблица 1) доступны для просмотра при нажатии определённой комбинации клавиш.

Таблица 1 — Идентификационные данные программного обеспечения

Tuosinga i Tigentinginkagnomisie gamisie riporpaminioro oceane termi				
Идентификационные данные (признаки)	Значение			
Идентификационное наименование ПО				
Номер версии (идентификационный номер) ПО	P-1.xx*			
Цифровой идентификатор ПО	_			
* «хх» принимает значения от 0 до 99 и не относится к метрологически значимому ПО.				
Номер версии ПО не ниже указанного				

Метрологические и технические характеристики

Таблица 2 — Метрологические характеристики

	Модификации			
Характеристика	HV-15KC	HV-60KC	HV-200KC	
	HV-15KCP	HV-60KCP	HV-200KCP	
Максимальная нагрузка, Max ₁ /Max ₂ /Max ₃ , кг	3/6/15	15/30/60	60/150/220	
Поверочный интервал, $e_1/e_2/e_3$,				
действительная цена деления (шкалы),				
$d_1/d_2/d_3$, $(e_i=d_i)$, кг	0,001/0,002/0,005	0,005/0,01/0,02	0,02/0,05/0,1	
Число поверочных интервалов, $n_1/n_2/n_3$	3000/3000/3000	3000/3000/3000	3000/3000/2200	
Класс точности по ГОСТ OIML R 76-1-2011	III	III	III	
Габаритные размеры весов, мм, не более				
-ширина	275	275	275	
-глубина	474	474	474	
-высота	368	368	368	
Диапазон температуры, °С	от + 5 до +40			
Диапазон уравновешивания тары	100% Max ₃			
Параметры электропитания от сети				
переменного тока (через адаптер):				
напряжение (номинальное), В	220			
частота, Гц	50±1			

Таблица 3 — Метрологические характеристики

, <u>1</u> 1 1				
	Модификации			
Характеристика	HW-10KC HW-10KCP		HW-100KC HW-100KCP	HW-200KC HW-200KCP
Максимальная нагрузка (Мах), кг	10	60	100	220
Поверочный интервал е, действительная				
цена деления (шкалы) d (e = d), кг	0,001	0,005	0,01	0,02
Число поверочных интервалов (п)	10000	12000	10000	11000
Класс точности по ГОСТ OIML R 76-1-2011	III	II	III	II
Габаритные размеры весов, мм, не более				
-ширина	275	330	390	
-глубина	474	621	712	
-высота	368	771	773	
Диапазон температуры, °С	от + 5 до +40			
Диапазон уравновешивания тары	100% Max			
Параметры электропитания от сети				
переменного тока (через адаптер):				
напряжение (номинальное), В	220			
частота, Гц	50±1			

Знак утверждения типа

наносится на титульный лист эксплуатационного документа и маркировочную табличку, расположенную на корпусе ГПУ средства измерений.

Комплектность средства измерений

Таблица 4 — Комплектность средства измерений

Наименование	Обозначение	Количество
Средство измерений		1 шт.
Руководство по эксплуатации		1 экз.

Сведения о методиках (методах измерений)

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к весам неавтоматического действия HV/W-KC, HV/W-KCP

ГОСТ OIML R 76-1—2011 «Весы неавтоматического действия. Часть 1 Метрологические и технические требования. Испытания».

Приказ Федерального агентства по техническому регулированию и метрологии от 29 декабря 2018 г. № 2818 «Об утверждении Государственной поверочной схемы для средств измерений массы»

Техническая документация A&D Company, Limited, Япония

Изготовитель

A&D Company, Limited, Япония

Адрес: 3-23-14 Higashi-lkebukuro, Toshima-Ku, Tokyo 170-0013, Japan

Производственная площадка:

A&D SCALES Co., LTD, Республика Корея

Адреса:

191, Inseok-ro, Deoksan-myeon, Jincheon-gun, Chungcheongbuk-do, 27856 Korea

125, Deokgeum-ro, Jincheon-eup, Jincheon-gun, Chungcheongbuk-do, 27846 Korea

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, 46 Телефон/факс: (495) 437-55-77 / 437-56-66

адрес в Интернет: www.vniims.ru

адрес электронной почты: office@vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 29.03.2018 г.