УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «25» февраля 2022 г. № 471

Лист № 1 Всего листов 7

Регистрационный № 84714-22

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «ЭСК «Горкунов» (ТК БЕЛОГОРСКИЙ)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «ЭСК «Горкунов» (ТК БЕЛОГОРСКИЙ) (далее — АИИС КУЭ) предназначена для измерений приращений активной и реактивной электрической энергии, потребленной и переданной за установленные интервалы времени, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ состоит из двух уровней:

- 1-й уровень измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее счетчики), вторичные измерительные цепи и технические средства приема-передачи данных;
- 2-й уровень информационно-вычислительный комплекс (ИВК) выполненный на основе серверного оборудования промышленного исполнения и работающего под управлением программного обеспечения ПК «Энергосфера», устройство синхронизации времени. ИВК включает в себя каналообразующую аппаратуру, сервер сбора данных и автоматизированные рабочие места (АРМ).

ИИК, ИВК, технические средства приема-передачи данных и линии связи образуют измерительные каналы (ИК).

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям измерительных цепей поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной, реактивной и полной мощности, которые усредняются за период 0,02 с. Измерительная информация на выходе счетчика без учета коэффициента трансформации:

- активная и реактивная электрическая энергия, как интеграл по времени от средней за период 0.02 с активной и реактивной мощности, соответственно, вычисляемая для интервалов времени 30 минут;
 - средняя на интервале времени 30 минут активная и реактивная электрическая мощность.

ИВК обеспечивает выполнение следующих функций:

- периодический (один раз в сутки) и по запросу автоматический сбор результатов измерений электрической энергии;
- автоматический сбор данных о состоянии средств измерений и состоянии объектов измерений;
 - хранение не менее 3,5 лет результатов измерений и журналов событий;
- автоматический сбор результатов измерений после восстановления работы каналов связи, восстановления питания;
- перемножение результатов измерений, хранящихся в базе данных, на коэффициенты трансформации ТТ и ТН;
 - формирование отчетных документов;
- ведение журнала событий с фиксацией изменений результатов измерений, осуществляемых в ручном режиме, изменений коэффициентов ТТ и ТН, синхронизации (коррекции) времени с указанием времени до и после синхронизации (коррекции), пропадания питания, замены счетчика, событий, отраженных в журналах событий счетчиков;
 - конфигурирование и параметрирование технических средств ИВК;
 - сбор и хранение журналов событий счетчиков;
 - ведение журнала событий ИВК;
- синхронизацию времени в сервере с возможностью коррекции времени в счетчиках электроэнергии;
- аппаратную и программную защиту от несанкционированного изменения параметров и любого изменения данных;
 - самодиагностику с фиксацией результатов в журнале событий.

ИВК осуществляет автоматический обмен (передачу и получение) результатами измерений и данными коммерческого учета электроэнергии с субъектами оптового рынка электрической энергии и мощности (ОРЭМ), с другими АИИС КУЭ утвержденного типа, а также с инфраструктурными организациями ОРЭМ, в том числе: АО «АТС», АО «СО ЕЭС». Обмен результатами измерений и данными коммерческого учета электроэнергии между информационными системами субъектов оптового рынка и инфраструктурными организациями ОРЭМ осуществляется по электронной почте в виде электронных документов ХМL в формате 80020, 80030, 80040, 51070 и др., заверенных электронной цифровой подписью.

Информационные каналы связи в АИИС КУЭ построены следующим образом:

- посредством интерфейса RS-485 от счетчиков до коммуникатора;
- посредством сети Интернет через провайдера и оператора сотовой связи GSM для передачи данных от коммуникатора до ИВК;
- посредством сети Интернет через провайдера (основной канал) и сети сотовой связи GSM (резервный канал) для передачи данных от ИВК во внешние системы;
- посредством сети Интернет через провайдера для передачи данных с сервера баз данных на APM.

В АИИС КУЭ на функциональном уровне выделена система обеспечения единого времени (СОЕВ), включающая в себя часы сервера и счетчиков. Сервер получает шкалу времени UTC(SU) в постоянном режиме от устройства синхронизации времени УСВ-2. УСВ-2 осуществляет прием и обработку сигналов GPS/ГЛОНАСС по которым осуществляет постоянную синхронизацию собственных часов со шкалой времени UTC(SU), часов сервера с периодичностью не реже 1 раза в сутки. При каждом опросе счетчиков, сервер определяет поправку часов счетчиков и, в случае, если поправка часов счетчиков превышает по ± 2 с (параметр настраиваемый), то формирует команду синхронизации. Журналы событий счетчиков и сервера отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции и (или) величины коррекции времени, на которую было скорректировано устройство.

Нанесение знака поверки на средство измерений не предусмотрено. Заводской номер в виде цифро-буквенного обозначения наносится на формуляр.

Программное обеспечение

В ИВК используется программное обеспечение ПК «Энергосфера». Программное обеспечение имеет уровень защиты от непреднамеренных и преднамеренных изменений в соответствии с Р 50.2.077-2014 — «средний». Идентификационные признаки метрологически значимой части ПО АИИС КУЭ приведены в таблице 1.

Таблица 1 – Идентификационные признаки метрологически значимой части ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование программного обеспечения	pso_metr.dll
Номер версии (идентификационный номер) программного обеспечения	1.1.1.1
Цифровой идентификатор программного обеспечения (рассчитываемый по алгоритму MD5)	cbeb6f6ca69318bed976e08a2bb7814b

Метрологические и технические характеристики

Состав измерительных каналов (ИК) и их основные метрологические и технические характеристики приведены в таблицах 2, 3, 4 и 5.

Таблица 2 – Состав ИК

No	Наименование	TT	TH	Счетчик	ИВК
ИК	ИК				
1	2	3	4	5	6
1	РП-10 кВ, 1 СШ,	ТЛП-10	ЗНОЛП-ЭК-10	СЭТ-	УСВ-2
	яч. №3	Кл.т. 0,5	Кл.т. 0,5	4TM.03M.01	Рег. № 41681-10;
		$K_{TT} = 1000/5$	$K_{TH}=10000/\sqrt{3}$	Кл.т. 0,5Ѕ/1	сервер ИВК ПК
		Рег. № 30709-11	$100/\sqrt{3}$	Рег. № 36697-17	«Энергосфера»
			Рег. № 47583-11		

Продолжение таблицы 2

1	2	3	4	5	6
2	РП-10 кВ, 2 СШ,	ТЛП-10	ЗНОЛП-ЭК-10	СЭТ-	УСВ-2
	яч. №18	Кл.т. 0,5	Кл.т. 0,5	4TM.03M.01	Рег. № 41681-10;
		$K_{TT} = 1000/5$	$K_{TH}=10000/\sqrt{3}$	Кл.т. 0,5S/1	сервер ИВК ПК
		Рег. № 30709-11	$100/\sqrt{3}$	Рег. № 36697-17	«Энергосфера»
			Рег. № 47583-11		

Примечания:

- 1. Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблицах 3 и 4 метрологических характеристик.
- 2. Допускается замена сервера ИВК АИИС КУЭ без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО) и сервера синхронизации времени на аналогичные утвержденных типов.
- 3. Допускается изменение наименований ИК, без изменения объекта измерений.
- 4. Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке. Технический акт хранится совместно с эксплуатационными документами АИИС КУЭ как их неотъемлемая часть.

Таблица 3 – Метрологические характеристики ИК в нормальных условиях применения

			1	1		1	
ΜΚ №№ cos φ		I ₅ ≤ I _{изм} <i <sub="">20</i>		$I_{20} \le I_{изм} < I_{100}$		$I_{100} \le I_{изм} \le I_{120}$	
ALK MANA	cos φ	$\delta_{ m Wo}{}^{ m A}$ %	$\delta_{\mathrm{Wo}}{}^{\mathrm{P}}$ %	$\delta_{\mathrm{Wo}}{}^{\mathrm{A}}$ %	$\delta_{\mathrm{Wo}}{}^{\mathrm{A}}$ %	$\delta_{ m Wo}^{ m P}$ %	$\delta_{\mathrm{Wo}}{}^{\mathrm{A}}$ %
1, 2	0,50	±5,5	±3,0	±3,0	±1,8	±2,3	±1,5
	0,80	±3,0	±4,6	±1,7	±2,6	±1,4	±2,1
	0,87	±2,7	±5,6	±1,5	±3,1	±1,2	±2,4
	1,00	±1,8	_	±1,2	-	±1,0	-

Таблица 4 – Метрологические характеристики ИК в рабочих условиях применения

ИК №№	202.42	$I_5 \le I_{изм} < I_{20}$		$I_{20} \le I_{изм} < I_{100}$		$I_{100} \le I_{изм} \le I_{120}$	
ALK MANA	cos φ	$\delta_{ m W}^{ m A}$ %	δw ^P %	$\delta_{\mathrm{W}}^{\mathrm{A}}$ %	$\delta_{\rm W}^{\rm P}$ %	$\delta_{ m W}{}^{ m A}$ %	$\delta_{\rm W}^{\rm P}$ %
1, 2	0,50	±5,7	±4,0	±3,3	±3,2	±2,6	±3,1
	0,80	±3,3	±5,3	±2,2	±3,7	±1,9	±3,4
	0,87	±3,0	±6,2	±2,0	±4,1	±1,8	±3,6
	1,00	±2,0	-	±1,4	-	±1,3	-

Пределы допускаемого значения поправки часов, входящих в СОЕВ, относительно шкалы времени UTC(SU) ± 5 с

Примечание:

 I_5 – сила тока 5% относительно номинального тока TT;

 I_{20} – сила тока 20% относительно номинального тока TT;

 I_{100} — сила тока 100% относительно номинального тока TT;

 I_{120} — сила тока 120% относительно номинального тока TT;

 $I_{\text{изм}}$ —силы тока при измерениях активной и реактивной электрической энергии относительно номинального тока TT;

 $\delta_{Wo}{}^{A}$ — доверительные границы допускаемой основной относительной погрешности при вероятности P=0,95 при измерении активной электрической энергии;

 $δ_{Wo}^{P}$ – доверительные границы допускаемой основной относительной погрешности при вероятности P=0,95 при измерении реактивной электрической энергии;

 δ_{W}^{A} — доверительные границы допускаемой относительной погрешности при вероятности P=0.95 при измерении активной электрической энергии в рабочих условиях применения;

 δ_W^P — доверительные границы допускаемой относительной погрешности при вероятности P=0,95 при измерении реактивной электрической энергии в рабочих условиях применения.

Таблица 5 – Основные технические характеристики ИК

Наименование характеристики	Значение
Количество измерительных каналов	2
Нормальные условия:	
$-$ Tok, $\%$ ot I_{hom}	от 5 до 120
$-$ напряжение, $\%$ от $\mathrm{U}_{\scriptscriptstyle{\mathrm{HOM}}}$	от 99 до 101
 коэффициент мощности соѕ ф 	0,5 инд 1,0 - 0,8 емк.
температура окружающего воздуха для счетчиков, °С:	от +21 до +25
Рабочие условия эксплуатации:	
допускаемые значения неинформативных параметров:	
$-$ Tok, $\%$ ot I_{hom}	от 5 до 120
 напряжение, % от U_{ном} 	от 90 до 110
 коэффициент мощности соѕ ф 	0,5 инд 1,0 - 0,8 емк.
температура окружающего воздуха, °С:	
- для ТТ и ТН	от -40 до +40
- для счетчиков	от 0 до +40
- для сервера	от +15 до +25
Период измерений активной и реактивной средней мощности и	30
приращений электрической энергии, минут	
Период сбора данных со счетчиков электрической энергии, минут	30
Формирование XML-файла для передачи внешним системам	Автоматическое
Формирование базы данных с указанием времени измерений и	Автоматическое
времени поступления результатов	
Глубина хранения информации	
Счетчики:	
 тридцатиминутный профиль нагрузки в двух направлениях, 	
сутки, не менее	100
Сервер ИВК:	
 хранение результатов измерений и информации состояний 	
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
 - резервный сервер с установленным специализированным ПО;
- резервирование каналов связи между уровнями ИИК и ИВК и между ИВК и внешними системами субъектов ОРЭМ, а также с инфраструктурными организациями ОРЭМ.

Ведение журналов событий:

- -счётчика, с фиксированием событий:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике.
- ИВК, с фиксированием событий::
 - даты начала регистрации измерений;
 - перерывы электропитания;
 - программные и аппаратные перезапуски;
 - установка и корректировка времени;
 - переход на летнее/зимнее время;
 - нарушение защиты ИВК;

— отсутствие/довосстановление данных с указанием точки измерений и соответствующего интервала времени.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита информации на программном уровне:
 - результатов измерений при передаче информации (возможность использования цифровой подписи);
 - установка пароля на счетчик;
 - установка пароля на сервер.

Знак утверждения типа

наносится типографским способом на титульный лист формуляра 123.411711.005.ФО «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «ЭСК «Горкунов» (ТК БЕЛОГОРСКИЙ). Формуляр».

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 6.

Таблица 6 – Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт.
1	2	3
Трансформаторы тока	ТЛП-10	4
Трансформаторы напряжения	ЗНОЛП-ЭК-10	6
Счетчики	CЭT-4TM.03M.01	2
ИВК	Энергосфера	1
COEB	УСВ-2	1
Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «ЭСК «Горкунов» (ТК БЕЛОГОРСКИЙ). Формуляр	123.411711.005.ФО	1

Сведения о методиках (методах) измерений

Методика измерений изложена в документе «Методика измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии ООО «ЭСК «Горкунов» (ТК БЕЛОГОРСКИЙ)» Методика измерений аттестована Западно-Сибирским филиалом ФГУП «ВНИИФТРИ». Аттестат аккредитации Западно-Сибирского филиала ФГУП «ВНИИФТРИ» по аттестации методик (методов) измерений и метрологической экспертизе № RA.RU.311735 от 19.07.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии ООО «ЭСК «Горкунов» (ТК БЕЛОГОРСКИЙ)

ГОСТ Р 8.596-2002 Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

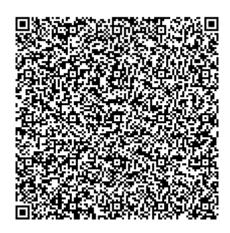
Общество с ограниченной ответственностью «Энергосбытовая компания «Горкунов»» (ООО «ЭСК «Горкунов»)

ИНН 5433970181

Адрес: 630099, Российская Федерация, г. Новосибирск, ул. Орджоникидзе, 40, офис 4603

Телефон: +7 (383) 349-93-96

Испытательный центр


Западно-Сибирский филиал Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (Западно-Сибирский филиал ФГУП «ВНИИФТРИ»)

Адрес: 630004, Российская Федерация, г. Новосибирск, проспект Димитрова, д. 4

Телефон (факс): +7 (383) 210-08-14, +7 (383) 210-13-60

E-mail: director@sniim.ru

Аттестат аккредитации Западно-Сибирского филиала ФГУП «ВНИИФТРИ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310556 от $14.01.2015 \, \Gamma$.

