УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «3» марта 2022 г. № 548

Регистрационный № 84620-22

Лист № 1 Всего листов 11

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Преобразователи давления измерительные ПД180

Назначение средства измерений

ПД180 Преобразователи измерительные (далее – преобразователи) давления абсолютного давления, избыточного предназначены ДЛЯ измерений давления, вакуумметрического давления, избыточно-вакуумметрического давления и гидростатического давления жидкостей, газов и пара и преобразований измеренных значений давления в унифицированный аналоговый выходной сигнал силы или напряжения постоянного тока и (или) цифровой выходной сигнал, а также отображения измеренного значения давления на встроенном индикаторе.

Описание средства измерений

Принцип действия преобразователей заключается в измерении давления среды, воздействующего на чувствительный элемент преобразователей. Чувствительным элементом преобразователей является тензорезистивный элемент.

Конструктивно преобразователи состоят из сенсорного модуля с тензорезистивным чувствительным элементом и микропроцессорного модуля.

Измеряемое давление подается в камеру сенсорного модуля, деформация его чувствительного элемента (мембраны, механически воздействующей на диэлектрик, на котором размещена тензочувствительная полупроводниковая схема из четырех кремниевых тензорезисторов, соединенных в мост Уитсона) преобразуется в изменение электрического сопротивления постоянному току тензорезисторов, которое преобразуется микропроцессорным модулем в унифицированный аналоговый выходной сигнал силы постоянного тока в диапазоне от 4 до 20 мА, с возможностью наложения частотно-модулированного сигнала — HART-протокола передачи данных, или напряжения постоянного тока в диапазонах от 0 до 5 В, от 0,4 до 5,5 В, от 0 до 10 В, от 0,5 до 4,5 В, от 0,4 до 2 В, а также в цифровой выходной сигнал по интерфейсам RS-485 и Ethernet.

Преобразователи в зависимости от конструктивного исполнения могут быть оснащены встроенным индикатором: 4-х разрядным светодиодным цифровым индикатором или жидкокристаллическим дисплеем.

Преобразователи предназначены для измерения давления сред, по отношению к которым материалы преобразователей, контактирующие с измеряемой средой, являются коррозионностойкими.

Преобразователи выпускаются в исполнениях, отличающихся типом измеряемого давления, верхним пределом преобразований/измерений давления, пределами допускаемой основной погрешности, материалом мембраны, способом присоединения к измерительному процессу, типом выходного сигнала, исполнением корпуса, типом электрического подключения.

Структура условного обозначения исполнений преобразователей приведена на рисунке 1.

Рисунок 1 – Структура условного обозначения исполнений преобразователей

Таблица 1 —	Расшифровка с	груктуры условного обозначения исполнений преобразователей				
Позиция	Код	Описание				
1	ПД180	Обозначение наименования преобразователей				
		Обозначение типа измеряемого давления:				
	ДИ	ДИ – избыточное давление;				
2	ДА	ДА – абсолютное давление;				
2	ДВ	ДВ – вакуумметрическое давление;				
	ДИВ	ДИВ – избыточно-вакуумметрическое давление;				
	ДΓ	ДГ – гидростатическое давление.				
		Верхний предел преобразований (далее – ВПП)/измерений				
		(далее – ВПИ)* давления:				
	0,001	$0.001 - 0.001 \text{ M}\Pi a;$				
	0,01	$0.01 - 0.01 \text{ M}\Pi a;$				
	0,0125	$0.0125 - 0.0125 \text{ M}\Pi a;$				
	0,016	$0.016 - 0.016 \text{ M}\Pi a;$				
	0,02	$0.02 - 0.02 \text{ M}\Pi a;$				
	0,0025	$0.0025 - 0.025 \text{ M}\Pi \text{a};$				
	0,03	$0.03 - 0.03 \text{ M}\Pi a;$				
	0,04	$0.04 - 0.04 \text{ M}\Pi a;$				
	0,05	$0.05 - 0.05 \text{ M}\Pi a;$				
	0,06	$0.06 - 0.06 \text{ M}\Pi a;$				
	0,08	$0.08 - 0.08 \text{ M}\Pi a;$				
3	0,1	$0.1 - 0.1 \text{ M}\Pi a;$				
3	0,15	$0.15 - 0.15 \text{ M}\Pi a;$				
	0,16	$0.16 - 0.16 \text{ M}\Pi a;$				
	0,25	$0.25 - 0.25 \text{ M}\Pi a;$				
	0,3	$0.3 - 0.3 \text{ M}\Pi a;$				
	0,4	$0.4 - 0.4 \text{ M}\Pi a;$				
	0,5	$0.5 - 0.5 \text{ M}\Pi a;$				
	0,6	$0.6 - 0.6 \text{ M}\Pi a;$				
	0,9	$0.9 - 0.9 \text{ M}\Pi a;$				
	1	$1 - 1,0 \text{ M}\Pi a;$				
	1,5	$1,5-1,5 \text{ M}\Pi a;$				
	1,6	$1,6-1,6 \text{ M}\Pi a;$				
	2,4	$2,4-2,4 \text{ M}\Pi a;$				
	2,5	$2,5-2,5 \text{ M}\Pi a;$				
	4	4 - 4,0 ΜΠα.				

Позиция	Код	Описание				
		Пределы допускаемой приведенной (к ВПП/ВПИ) основно				
		погрешности преобразований/измерений давления:				
	0,15	$0.15 - \pm 0.15$ %;				
	0,20	$0.20 - \pm 0.2\%$;				
	0,25	$0.25 - \pm 0.25\%;$ $0.25 - \pm 0.25\%;$				
4	0,35	$0.25 - \pm 0.25\%$, $0.35 - \pm 0.35\%$;				
	0,33	$0.35 - \pm 0.35 \%$, $0.40 - \pm 0.4 \%$;				
	0,50	$0.40 - \pm 0.4\%$, $0.50 - \pm 0.5\%$;				
	,					
	0,60	$0.60 - \pm 0.6\%$;				
	1,00	$1.00 - \pm 1\%$;				
	1,50	$1,50 - \pm 1,5 \%$.				
	g.	Материала мембраны:				
5	St	St – нержавеющая сталь;				
	Ce	Се – керамика;				
	Si	Si – открытый кристалл.				
	00	Способ присоединения к измерительному процессу:				
	00	00 – отсутствует;				
	01	01 — резьба M20×1,5 по ГОСТ 8724-2002;				
	02	02 — резьба G1/2 по ГОСТ 6357-81 и ГОСТ 6211-81;				
	03	03 – резьба G1/4 по ГОСТ 6357-81 и ГОСТ 6211-81;				
	11	11 – резьба G1/2 по ГОСТ 6357-81 и ГОСТ 6211-81				
		(открытая мембрана);				
	12	12 – M24×1,5 πο ΓΟCT 8724-2002				
6		(открытая мембрана);				
	21	21 – DN15 (20) Clamp DIN 32676;				
	22	22 – DN25 (32, 40) Clamp DIN 32676;				
	23	23 – DN50 Clamp DIN 32676;				
31 31 – DN20 DIN 11851;		· · · · · · · · · · · · · · · · · · ·				
	32 – DN25 DIN 11851;					
	33	33 – DN32 DIN 11851;				
	34	34 – DN40 DIN 11851;				
	35	35 – DN50 DIN 11851.				
		Тип выходного сигнала:				
	И1	И1 – от 4 до 20 мА по 2-х проводной схеме подключений;				
	И2	И2 – от 4 до 20 мА по 3-х проводной схеме подключений;				
	И3	ИЗ – от 4 до 20 мА с наложением частотно-модулированного				
		сигнала – HART-протокол;				
	У1	У1 – от 0 до 10 В по 3-х проводной схеме подключений;				
7	У2	У2 – от 0 до 5 В по 3-х проводной схеме подключений;				
	У3	У3 – от 0,4 до 5,5 В по 3-х проводной схеме подключений;				
	У4	У4 – от 0,5 до 4,5 В по 3-х проводной схеме подключений;				
	У5	У5 – от 0,4 до 2,0 В по 3-х проводной схеме подключений;				
	RS	RS – интерфейс передачи данных RS-485 с протоколом				
		Modbus;				
	Et	Et – Ethernet.				
		Исполнение корпуса или тип электрического подключения:				
	A1	A1 – EN175301-803 форма А;				
8	B1	В1 – M12×1 прямой;				
	B2	B2 – M12×1 угловой;				
	C.010	С.010 – кабельный ввод (герметичное исполнение IP68);				

Позиция	Код	Описание			
	RJ	RJ – RJ-45;			
	К1	К1 – полевой корпус;			
	КИ1	КИ1 – полевой корпус с цифровым индикатором			
		(жидкокристаллический дисплей);			
	КИ2	КИ2 – полевой корпус с цифровым индикатором			
		(4-х разрядный светодиодный цифровой индикатор).			
* Для преобразователей вакуумметрического давления приведено абсолютное					
значение ВП	значение ВПП/ВПИ давления.				

Заводской номер наносится на корпус преобразователей методом гравировки в виде цифрового кода.

Общий вид преобразователей представлен на рисунках 2 – 12.

Нанесение знака поверки на преобразователи в обязательном порядке не предусмотрено.

Рисунок 2 — Общий вид преобразователей давления измерительных $\Pi Д180$ с типом электрического подключения A1

Рисунок 3 — Общий вид преобразователей давления измерительных ПД180 с типом электрического подключения B1

Рисунок 4 — Общий вид преобразователей давления измерительных $\Pi Д180$ с типом электрического подключения B2

исполнения с типами измеряемого давления ДИ, ДА, ДВ, ДИВ

исполнение с типом измеряемого давления ДГ

Рисунок 5 — Общий вид преобразователей давления измерительных ПД180 с типом электрического подключения C.010

Рисунок 6 – Общий вид преобразователей давления измерительных ПД180 с типом электрического подключения RJ

Рисунок 7 — Общий вид преобразователей давления измерительных ПД180 с исполнением корпуса и типом электрического подключения К1

Рисунок 8 — Общий вид преобразователей давления измерительных ПД180 с исполнением корпуса и типом электрического подключения КИ1

Рисунок 9 — Общий вид преобразователей давления измерительных ПД180 с исполнением корпуса и типом электрического подключения КИ2

Рисунок 10 — Общий вид преобразователей давления измерительных ПД180 со способом присоединения к измерительному процессу с помощью резьбы по ГОСТ 8724-2002, ГОСТ 6357-81, ГОСТ 6211-81

Рисунок 11 — Общий вид преобразователей давления измерительных ПД180 со способом присоединения к измерительному процессу в соответствии с DIN 32676

Рисунок 12 — Общий вид преобразователей давления измерительных ПД180 со способом присоединения к измерительному процессу в соответствии с DIN 11851

Пломбирование преобразователей не предусмотрено.

Программное обеспечение

Преобразователи имеют встроенное программное обеспечение (далее – Π O), установленное в энергонезависимую память и выполняющее функции преобразования измеренного давления в унифицированный аналоговый выходной сигнал силы постоянного тока в диапазоне от 4 до 20 мА с возможностью наложения частотно-модулированного сигнала (НАRT-протокол) или напряжения постоянного тока в диапазонах от 0 до 5 B, от 0,4 до 5,5 B, от 0 до 10 B, от 0,5 до 4,5 B, от 0,4 до 2 B, а также в цифровой выходной сигнал по интерфейсам RS-485 и Ethernet. Данное Π O не может быть модифицировано, загружено или прочитано через какой-либо интерфейс.

Конструкция преобразователей исключает возможность несанкционированного влияния на ПО и измерительную информацию.

ПО является метрологически значимым.

Метрологические характеристики преобразователей нормированы с учетом влияния ПО.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений — «высокий» в соответствии с рекомендациями Р 50.2.077-2014. ПО защищено от преднамеренных изменений с помощью специальных программных средств.

Идентификационные данные ПО преобразователей приведены в таблице 1.

Таблица 1 – Идентификационные данные ПО

	Значение				
Идентификационные данные (признаки)	преобразователи с выходным сигналом силы постоянного тока	преобразователи с выходным сигналом напряжения постоянного тока	преобразователи с цифровым выходным сигналом		
Идентификационное	ΠO_embSoft_PD18	ΠO_embSoft_PD180	ΠO_embSoft_PD180D		
наименование ПО	0I_v1.29.hex	U_v1.29.hex	_v1.35.hex		
Номер версии (идентификационный номер ПО), не ниже	1.29	1.29	1.35		
Цифровой идентификатор ПО	-	-	-		

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

таблица 2 – метрологические характеристики						
	Значение характеристики в зависимости					
Наименование характеристики		от типа измеряемого давления				
	ДА	ДИ	ДГ	ДВ	ДИВ	
Нижний предел преобразований/измерений	0	0	0	0	-0,1	
давления, МПа	U	U	U	U	-0,1	
Верхний предел преобразований/измерений	1,6	4,0	2,5	-0,1	2,4	
давления, МПа	1,0	4,0	2,3	-0,1	2,4	
Минимальный диапазон преобразований/	0,1	0,01	0,001	0,01	0,0125	
измерений давления, МПа $^{1)}$	0,1	0,01	0,001	0,01	0,0123	
Диапазон преобразований давления в выходной		от 4 до 20				
аналоговый сигнал силы постоянного тока, мА						
Диапазоны преобразований давления в выходной		от 0 до 5; от 0,4 до 5,5; от 0 до 10;				
аналоговый сигнал напряжения постоянного тока, В		от 0,5 до 4,5; от 0,4 до 2				
Пределы допускаемой приведенной	$\pm 0,15; \pm 0,2; \pm 0,25; \pm 0,35; \pm 0,4; \pm 0,5$. +0.5.			
(к ВПП) основной погрешности преобразований		$\pm 0,13,\pm 0,2,\pm 0,23,\pm 0,33,\pm 0,4,\pm 0,3,\\ \pm 0,6;\pm 1,0;\pm 1,5$				
давления ^{2) 3)} , %	±0,0; ±1,0; ±1,3					
Пределы допускаемой приведенной	$\pm 0,15; \pm 0,2; \pm 0,25; \pm 0,35; \pm 0,4; \pm 0,4$. +0.5.			
(к ВПИ) основной погрешности измерений		$\pm 0,13; \pm 0,2; \pm 0,23; \pm 0,33; \pm 0,4; \pm 0,3; \pm 0,6; \pm 1,0; \pm 1,5$				
давления ^{2) 4)} , %	±0,0; ±1,0; ±1,3					
Пределы допускаемой абсолютной основной		±(0,003·ВПИ + N)				
погрешности измерений давления 5) 6), %						
Нормальные условия измерений:						
- температура окружающей среды, °С		от +15 до +25				
- относительная влажность воздуха						
(без конденсации влаги), %		от 30 до 85				

- 1) Диапазон преобразований/измерений модуль алгебраической разности между значениями верхнего и нижнего пределов преобразований/измерений давления.
- $^{2)}$ Конкретное значение пределов допускаемой приведенной (к ВПП/ВПИ) основной погрешности преобразований/измерений давления приведено в паспортах на преобразователи.
- ³⁾ При оценке результатов измерений по аналоговому выходному сигналу силы или напряжения постоянного тока.
 - 4) При оценке результатов измерений по цифровым интерфейсам.
 - 5) При оценке результатов измерений по встроенному индикатору.
- $^{6)}$ N единица младшего разряда встроенного индикатора, выраженная в единицах измеряемых величин.

Вариация преобразованного/измеренного значения давления не более 0,5 от абсолютного значения пределов допускаемой приведенной (к ВПП/ВПИ)/абсолютной основной погрешности преобразований/измерений давления.

Пределы допускаемой приведенной (к ВПП/ВПИ)/абсолютной дополнительной погрешности преобразований/измерений давления при изменении температуры окружающей среды от нормальных условий измерений (от +15 до +25 °C включ.) в диапазоне рабочих условий измерений, на каждые 10 °C изменения температуры окружающего воздуха, составляют не более 0.5 от пределов допускаемой приведенной (к ВПП/ВПИ)/абсолютной основной погрешности преобразований/измерений давления.

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Цифровые интерфейсы	HART, RS-485, Ethernet
Рабочие условия измерений:	
- температура окружающей среды, °С	от -10 до $+70^{-1)}$; от -40 до $+80$
- относительная влажность воздуха (без конденсации влаги,	
при температуре окружающего воздуха	
+35 °C), %, не более	85
Напряжение питания постоянного тока для	
преобразователей с типом выходного сигнала, В:	
- И1, И2, И3, RS, Et, У1, У2, У3	от 12 до 36 ²⁾
- У4	от 5 до 6,5 ³⁾
- Y5	от 3,2 до 6,5 4)
Масса, кг, не более	4,0
Потребляемая мощность, Вт, не более	2,0
Габаритные размеры, мм:	
- ширина	от 52 до 154
- высота	от 66 до 330
- глубина	от 35 до 114
- диаметр	от 27 до 64
Средняя наработка на отказ, ч	500000
Средний срок службы, лет	12

¹⁾ Без ограничения оптических свойств, таких как время отклика, контрастность и снижение частоты обновления для преобразователей со встроенным индикатором.

Знак утверждения типа

наносится на титульный лист паспорта и руководства по эксплуатации типографским способом и на маркировочную наклейку, нанесенную на корпус преобразователей, любым технологическим способом.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Количество		
Преобразователь давления измерительный	-	1 шт.		
ПД180				
Паспорт и гарантийный талон	КУВФ.406233.41ПС	1 экз.		
Руководство по эксплуатации (для преобразователей с типом выходного сигнала И1, И2, И3, RS, Et)*	КУВФ.406233.41РЭ1	1 экз.		
Руководство по эксплуатации (для преобразователей с типом выходного сигнала У1, У2, У3, У4, У5)*	КУВФ.406233.41РЭ2	1 экз.		
* В зависимости от исполнения преобразователей.				

Сведения о методиках (методах) измерений

приведены в разделе 4 «Конструкция» руководства по эксплуатации.

²⁾ Номинальное значение напряжения питания постоянного тока 24 В.

³⁾ Номинальное значение напряжения питания постоянного тока 5 В.

⁴⁾ Номинальное значение напряжения питания постоянного тока 3,3 В.

Нормативные и технические документы, устанавливающие требования к преобразователям давления измерительным ПД180

Приказ Федерального агентства по техническому регулированию и метрологии от 29 июня 2018 года № 1339 «Об утверждении государственной поверочной схемы для средств измерений избыточного давления до 4000 МПа»

Приказ Федерального агентства по техническому регулированию и метрологии от 06 декабря 2019 года № 2900 «Об утверждении Государственной поверочной схемы для средств измерений абсолютного давления в диапазоне $1 \cdot 10^{-1} - 1 \cdot 10^{7}$ Па»

ГОСТ 8.187-76 «Государственная система обеспечения единства измерений (ГСИ). Государственный специальный эталон и общесоюзная поверочная схема для средств измерений разности давлений до $4\cdot10^4$ Па»

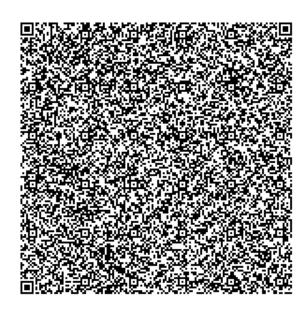
ТУ 26.51.52-007-4652536-2020 «Преобразователи давления измерительные ПД180. Технические условия»

Изготовитель

Общество с ограниченной ответственностью «Производственное Объединение ОВЕН» (ООО «Производственное Объединение ОВЕН»)

Адрес деятельности: 301830, Тульская область, г. Богородицк, Заводской проезд, стр. 2 «Б»

Место нахождения и адрес юридического лица: 111024, г. Москва, 2-я ул. Энтузиастов, д. 5, корп. 5


ИНН 7722127111

Испытательный центр

Общество с ограниченной ответственностью «Испытательный центр разработок в области метрологии» (ООО «ИЦРМ»)

Место нахождения и адрес юридического лица: 117546, г. Москва, Харьковский проезд, д.2, этаж 2, пом. I, ком. 35,36

Аттестат аккредитации ООО «ИЦРМ» по проведению испытаний средств измерений в целях утверждения типа N RA.RU.311390 от 18.11.2015 г.

