УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «18» ноября 2022 г. № 2920

Лист № 1 Всего листов 9

Регистрационный № 87380-22

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «ЦКБ МТ «Рубин»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «ЦКБ МТ «Рубин» (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, трехуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

- 1-й уровень измерительно-информационные комплексы (далее ИИК), которые включают в себя трансформаторы тока (далее ТТ) и счетчики активной и реактивной электроэнергии (далее счетчики), вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2, 3.
- 2-й уровень измерительно-вычислительный комплекс электроустановки (далее ИВКЭ), включающий в себя устройство сбора и передачи данных RTU-325 (далее УСПД), каналообразующую аппаратуру.
- 3-й уровень информационно-вычислительный комплекс (далее ИВК) АО «ЦКБ МТ «Рубин», включающий в себя каналообразующую аппаратуру, сервер баз данных (далее БД) АИИС КУЭ, устройство синхронизации времени УСВ-3 (далее УСВ), автоматизированные рабочие места персонала (АРМ) и программное обеспечение (далее ПО) «АльфаЦЕНТР».

ИВК предназначен для автоматизированного сбора и хранения результатов измерений, состояния средств измерений, подготовки и отправки отчетов в энергосбытовые организации, АО «АТС», АО «СО ЕЭС».

Первичные токи трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ, хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы, а также отображение информации по подключенным к УСПД устройствам.

На верхнем — третьем уровне системы выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление отчетных документов. Передача информации в заинтересованные организации осуществляется от сервера БД с помощью электронной почты по выделенному каналу связи по протоколу TCP/IP.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень ИИК, ИВКЭ и ИВК. АИИС КУЭ оснащена УСВ, на основе приемника сигналов точного времени от глобальной навигационной спутниковой системы (ГЛОНАСС/GPS). УСВ обеспечивает автоматическую коррекцию часов сервера БД. Коррекция часов сервера БД проводится при расхождении часов УСВ и времени сервера БД более чем на ± 1 с. Коррекция часов УСПД проводится при расхождении УСПД и времени сервера БД более чем на ± 2 с Часы счетчиков синхронизируются от часов УСПД с периодичностью не реже 1 раза в сутки, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ± 2 с.

Журналы событий счетчика электроэнергии отражают: время (дата, часы, минуты, секунды) коррекции часов.

Журналы событий сервера БД и УСПД отражают: время (дата, часы, минуты, секунды) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Нанесение знака поверки и заводского номера на АИИС КУЭ не предусмотрено. Заводской номер АИИС КУЭ: 001

Программное обеспечение

В АИИС КУЭ используется ПО АльфаЦЕНТР, в состав которого входят модули, указанные в таблице 1. ПО АльфаЦЕНТР обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО АльфаЦЕНТР.

Таблица 1 – Идентификационные данные ПО

Идентификационные признаки	Значение	
Идентификационное наименование ПО	ПО «АльфаЦЕНТР»	
	Библиотека ас_metrology.dll	
Номер версии (идентификационный номер) ПО	не ниже 12.01	
Цифровой идентификатор ПО	3e736b7f380863f44cc8e6f7bd211c54	
Алгоритм вычисления цифрового идентификатора ПО	MD5	

 ΠO «АльфаЦЕНТР» не влияет на метрологические характеристики измерительных каналов (далее – ИК) АИИС КУЭ, указанные в таблице 2.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики Состав ИК АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав ИК АИИС КУЭ и их основные метрологические характеристики

×	Наименование ИК	Измерительные компоненты				Метрологические характеристики ИК	
Номер ИК		TT	Счётчик	УСПД/ УСВ	Вид электро- энергии	Основ- ная погреш- ность, %	Погрешность в рабочих условиях, %
1	2	3	4	5	6	7	8
1	ПС-320, ф. 320-51, ТЭЦ - 1, ф. 1-103, ф. 1-104	ТШП Кл. т. 0,5S	A1805RALQ-P4GB- DW-4	RTU-325 Рег. № 37288-08	активная	±1,0	±3,3
PT:	РТП-483, ГРЩ №4, т.у. Wh01	Ктт 1500/5 Рег. № 47957-11	Кл. т. 0,5S/1,0 Рег. № 31857-06		реактивная	±2,4	±6,3
2	ПС-320, ф. 320-51, ТЭЦ- 1, ф. 1-103, ф. 1-104 Кл. т. 0,5S Дег. Мо. 21 Дег. Мо. 24823 22	УСВ-3 Рег. № 84823-22	активная	±1,0	±3,3		
2	РТП-483, ГРЩ №4, т.у. Wh02	Ктт 1500/5 Рег. № 47957-11	Кл. т. 0,5S/1,0 Рег. № 31857-06	1 (1. 3)2 04023-22	реактивная	±2,4	±6,3

Продолжение таблицы 2

1	2	3	4	5	6	7	8
ПС-320, ф. 320-51, ТЭЦ- 1, ф. 1-103, ф. 1-104	ТШП Кл. т. 0,5S	A1805RALQ-P4GB- DW-4		активная	±1,0	±3,3	
3	РТП-483, ГРЩ №4, т.у. Wh03	Ктт 1000/5 Рег. № 47957-11	Кл. т. 0,5S/1,0 Рег. № 31857-06	DTI 225	реактивная	±2,4	±6,3
5	ТШП-0,66 A1805RALQ-P4GВ- ПС-36, ф. 36-05, ТП-191, Кл. т. 0,5S DW-4 RTU-325		активная	±1,0	±3,3		
3	ГРЩ №1-3, т.у. Wh05	K _{TT} 400/5 Per. № 15173-06	Кл. т. 0,5S/1,0 Рег. № 31857-06	УСВ-3 Рег. № 84823-22	реактивная	±2,4	±6,3
6	ПС-36, ф. 36-05, ТП-190,	ТШП-0,66 Кл. т. 0,5S	A1805RALQ-P4GB- DW-4	FEI. JNº 04023-22	активная	±1,0	±3,3
0	ГРЩ №1-3, т.у. Wh06	Ktt 400/5 Per. № 15173-06	Кл. т. 0,5S/1,0 Рег. № 31857-06		реактивная	±2,4	±6,3
Пределы допускаемой погрешности СОЕВ АИИС КУЭ, с					±	5	

Примечания

- 1 Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2 В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3 Погрешность в рабочих условиях указана для $\cos \varphi = 0.8$ инд $I=0.02 \cdot I_{\text{ном}}$ и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК №№ 1-3, 5, 6 от 0 до + 40 °C.
- 4 Допускается замена ТТ и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
 - 5 Допускается замена УСПД и УСВ на аналогичные утвержденных типов.
- 6 Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 – Основные технические характеристики ИК

Наименование характеристики ИК ———————————————————————————————————	Значение
1	2
Количество измерительных каналов	5
Нормальные условия:	
параметры сети:	
- напряжение, % от U _{ном}	от 99 до 101
- ток, % от I _{ном}	от 100 до 120
- частота, Гц	от 49,85 до 50,15
- коэффициент мощности соsф	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- Tok, $\%$ ot I_{hom}	от 2 до 120
- коэффициент мощности	от $0,5$ _{инд} до $0,8$ _{емк}
- частота, Гц	от 49,6 до 50,4
- температура окружающей среды для TT, °C	от -45 до +50
- температура окружающей среды в месте расположения	
счетчиков, °С	от -40 до +65
- температура окружающей среды в месте расположения	
сервера, °С	от +10 до +30
Надежность применяемых в АИИС КУЭ компонентов:	
Счетчики:	
- среднее время наработки на отказ, ч, не менее:	
для электросчетчика A1805RALQ-P4GB-DW-4	120000
- среднее время восстановления работоспособности, ч	2
УСПД:	
- среднее время наработки на отказ не менее, ч	
для УСПД RTU-325	100000
- среднее время восстановления работоспособности, ч	2
УСВ:	
- среднее время наработки на отказ не менее, ч для УСВ-3	180000
- среднее время восстановления работоспособности, ч	2
Сервер:	
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч	1

Продолжение таблицы 3

1	2
Глубина хранения информации	
Счетчики:	
- тридцатиминутный профиль нагрузки в двух	
направлениях, сут, не менее	114
- при отключении питания, лет, не менее	45
УСПД:	
- суточные данные о тридцатиминутных приращениях	
электропотребления по каждому каналу и электропотребление за	
месяц по каждому каналу, сут, не менее	45
- сохранение информации при отключении питания, лет, не	
менее	5
Сервер:	
- хранение результатов измерений и информации	
состояний средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счетчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счетчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - счетчика;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

– о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт./	
Паименование	Ооозначение	ЭКЗ	
Трансформатор тока	ТШП	9	
Трансформатор тока	ТШП-0,66	6	
Счётчик электрической энергии	A1805RALQ-P4GB-DW-	5	
многофункциональный	4	3	
Устройство сбора и передачи данных	RTU-325	1	
Устройство синхронизации времени	УСВ-3	1	
Программное обеспечение	«АльфаЦЕНТР»	1	
Формуляр	ПЭ-340.ФО	1	

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) АО «ЦКБ МТ «Рубин», аттестованном ООО «Спецэнергопроект», уникальный номер записи в реестре аккредитованных лиц № RA.RU.312236.

Нормативные документы, устанавливающие требования к АИИС КУЭ

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия;

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания;

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Правообладатель

Акционерное общество «Центральное конструкторское бюро морской техники «Рубин» (АО «ЦКБ МТ «Рубин»)

ИНН 7838418751

Адрес: 191119, г. Санкт-Петербург, ул. Марата, д. 90

Телефон: +7 (812) 407-51-32 Факс: +7 (812) 764-37-49

Изготовитель

Общество с ограниченной ответственностью «ПетроЭнергоцентр»

(«ПетроЭнергоцентр»)

ИНН 7842345538

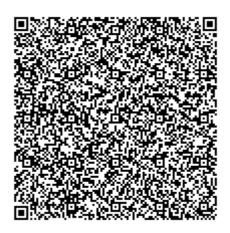
Адрес: 191119, г. Санкт-Петербург, ул. Днепропетровская, д. 33, литер А,

пом.11-15(2Н)

Телефон: +7 (812) 764-99-00 Факс: +7 (812) 572-32-29

Испытательный центр

Общество с ограниченной ответственностью «Спецэнергопроект»


(ООО «Спецэнергопроект»)

ИНН 7722844084

Адрес: 115419, г. Москва, ул. Орджоникидзе, д. 11, стр. 3, этаж 4, помещ. І, ком. 6, 7

Телефон: +7 (495) 410-28-81 E-mail: info@sepenergo.ru

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.312429.

