УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «27» октября 2022 г. № 2702

Лист № 1 Всего листов 11

Регистрационный № 87212-22

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Весы автомобильные Нью-Тонн

Назначение средства измерений

Весы автомобильные Нью-Тонн (далее – весы) предназначены для измерений массы автомобильных и сельскохозяйственных транспортных средств (далее – TC) в статическом режиме и/или для измерений в движении полной массы TC и нагрузок на отдельные оси или группы осей.

Описание средства измерений

Принцип действия весов основан на использовании гравитационного притяжения. Сила тяжести, возникающая под действием нагрузки, передаваемой от колес ТС, вызывает деформацию чувствительного элемента, которая преобразуется в аналоговый электрический сигнал, пропорциональный массе объекта измерений. Этот сигнал подвергается аналогоцифровому преобразованию, математической обработке электронными устройствами весов с дальнейшим определением значения массы объекта измерений.

Измеренное значение массы отображается в визуальной форме на дисплее весов или через цифровой интерфейс связи передается для визуализации на персональный компьютер и/или вторичный дисплей. Управление весами осуществляется с клавиатуры дисплея весоизмерительного прибора или средствами ввода данных персонального компьютера.

Весы состоят из:

- грузоприемного устройства (далее ГПУ), включающего в себя тензорезисторные весоизмерительные датчики (Т.2.2.1 ГОСТ OIML R 76–1—2011; далее датчики);
- весоизмерительного прибора (терминал по Т.2.2.5 ГОСТ OIML R 76–1—2011; далее прибор) или устройства обработки аналоговых данных по Т.2.2.3 ГОСТ OIML R 76-1–2011 (далее УОАД) (при использовании датчиков с аналоговым выходным сигналом и терминалом) или устройства опроса весоизмерительных датчиков.

ГПУ включает в себя от одной до пяти секций, представляющих собой металлическую либо бетонную конструкцию для размещения транспортного средства (далее – ТС), каждая из которых опирается на четыре датчика. Секции ГПУ между собой жестко не соединены, что позволяет определять межосевое расстояние, взвешиваемого ТС и его класс. Соседние секции могут иметь общие точки опоры (датчик). ГПУ может быть установлено на одном уровне с поверхностью дорожного полотна (врезной вариант) или над ним с заездом ТС по наклонным пандусам с горизонтальными промежуточными участками между ГПУ и пандусами (обязательная опция для варианта установки ГПУ над дорожным полотном). В любом варианте ГПУ монтируется на заранее подготовленный железобетонный фундамент или другое, заранее подготовленное, недеформируемое (свайное, асфальтобетонное, металлическое, щебеночное и т.п.) основание.

Весы, которые выпускаются во взрывозащищённом исполнении комплектуются комплектом датчиков весоизмерительных для работы во взрывоопасных зонах классов 1 и 2, клеммными коробками и барьером искрозащиты. Маркировка взрывозащиты для весов взрывобезопасного исполнения II Gb с IIB T6...T4 X.

Передача данных на периферийные или регистрирующие устройства осуществляется по интерфейсам связи.

В весах используются следующие датчики:

- датчики весоизмерительные тензорезисторные ZS, CLC, WLS, SDS, EDS производства «Keli Sensing Technology (Ningbo) Co., Ltd.», Китай, (регистрационный номер в ФИФОЕИ 75819-19), модификации: ZSC, ZSE, ZSWF, ZSWFB, ZSWFG, ZSWFGC, ZSKB, ZSFC, ZSF, ZSFN, ZSFL, ZSFB, ZSFY, ZSL, ZSFGC, ZSNC, WLS; CLC; EDSK, EDSB, EDSC;
- датчики весоизмерительные сжатия RC3 производства «Flintec GmbH», Германия (регистрационный номер в ФИФОЕИ 50843-12), модификации: RC3-C3, RC3-C4;
- датчики весоизмерительные тензорезисторные CDL производства "PRECIA SA", Франция, (регистрационный номер в ФИФОЕИ 71534-18), модификации: CDL X970-C-3500-30, CDL X970-C-3500-50;
- датчики весоизмерительные тензорезисторные С производства «Hottinger Bruel & Kjaer Co., Ltd.», Китай (регистрационный номер в ФИФОЕИ 67871-17) модификации: C16A, C16i, C2A:
- датчики весоизмерительные тензорезисторные С производства «Hottinger Baldwin Messtechnik GmbH», Германия (регистрационный номер в ФИФОЕИ 60480-15), модификации: C16A, C16i, C2A;
- датчики весоизмерительные тензорезисторные Sierra производства ООО «Сиерра», Россия, г. Москва (регистрационный номер в ФИФОЕИ 76409-19), модификации: SBM11, SL6, SH8, SHM9, SH3, SBM14, SH2;
- датчики весоизмерительные тензорезисторные Single shear beam, Dual shear beam, S beam, Column производства «Zhonghang Electronic Measuring Instrument Co., LTD» (Zemic), КНР (регистрационный номер в ФИФОЕИ 55371-19), модификации: HM14H1, BM14A, BM14C, BM14G, BM14K;
- датчики весоизмерительные тензорезисторные Digital Load Cell производства «Zhonghang Electronic Measuring Instrument Co., LTD» (Zemic), КНР (регистрационный номер в ФИФОЕИ 55634-19), модификации: DBM14A, DBM14C, DBM14G, DBM14K, DHM14C, DHM14H1;
- датчики весоизмерительные тензорезисторные WBK производства «CAS Corporation», Республика Корея (регистрационный номер в ФИФОЕИ 56685-14) модификации: WBK-20 C3, WBK-25 C3, WBK-30 C3, WBK-50 C3, WBK-20 C4, WBK-25 C4, WBK-30 C4, WBKC-50 C4, WBKC-20, WBKC-25, WBKC-30;
- датчики весоизмерительные тензорезисторные WBK-D производства «CAS Corporation», Республика Корея (регистрационный номер в ФИФОЕИ 54471-13) модификации: WBK-20D, WBK-25D, WBK-30D, WBK-50D;

В весах используются следующие приборы весоизмерительные:

- терминал BT-013, производства ООО «НАИС», Россия, г Ростов-на-Дону;

В весах используются следующие УОАД:

- блок преобразования аналогового сигнала тензодатчиков в цифровой код БТС4, производства ООО «НАИС», Россия, г Ростов-на-Дону;
- устройство опроса весоизмерительных датчиков МПР, производства ООО «НАИС», Россия, г Ростов-на-Дону.

Сигнальные кабели датчиков напрямую или через соединительную коробку подключаются к весоизмерительному прибору. При использовании персонального компьютера сигнальные кабели датчиков подключаются через устройство опроса весоизмерительных датчиков к персональному компьютеру.

Общий вид ГПУ весов представлен на рисунке 1.

Место установки маркировочной таблички на торце грузоприемной платформы под съемной крышкой.

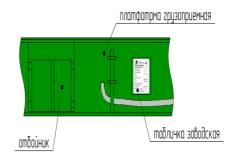


Рисунок 1 – Общий вид ГПУ

Модификации весов имеют обозначения вида Нью-Тонн-[1]-[2]-[3]-[4]-[5]-[6]-[7]. Расшифровка индексов в обозначении модификаций приведена в таблице 1.

Таблица 1 — Расшифровка индексов в обозначении модификаций

таолица т	Гаолица I — Расшифровка индексов в ооозначении модификации					
Индекс	Значение	Расшифровка				
[1]	20; 30; 40; 50, 60; 80; 100; 120; 150	Максимальное значение нагрузки (Мах), т				
[2]	от 2 до 30	Длина ГПУ, м				
[3]	от 1 до 5	Количество секций (грузоприемных платформ) в составе ГПУ весов				
[4]	Ц; А	Условное обозначение датчика в составе весов: Ц (цифровой); А (аналоговый)				
[5]	H; B; P; K	Тип исполнения ГПУ (допускается сочетание букв в индексе): Н – надземный; В- врезной, поверхность секций устанавливается на уровне дорожного полотна; Р – сборно-разборный; К – колейный.				
[6]	С; СД	С- статическое взвешивание, СД – для взвешивания в статике и в движении				
[7]	Исп. 1	Исполнение 1 — модификации весов во взрывозащищенном исполнении. Обозначение отсутствует для модификаций, не предназначенных для использования во взрывоопасных средах.				

В весах предусмотрено следующие основные устройства и функции:

- а) в режиме взвешивания в движении (в скобках соответствие пункта ГОСТ 33242-2015)
- автоматическое устройство установки нуля (3.2.10.4);
- устройство хранения информации (5.5.9);
- устройство переключения ГПУ;
- определения скорости и направления движения, взвешиваемого ТС;
- определение межосевого расстояния и класс взвешиваемого ТС;
- сигнализация о превышении максимальной рабочей скорости движения (5.5.9);
- сигнализация о превышении установленных максимально допустимых нормативных значений массы, осевых нагрузок, нагрузок на группу осей ТС;
 - устройство мониторинга и самодиагностики промышленных весов;

- устройство формирования низковольтных сигналов в момент достижения настраиваемых значений веса;
- б) в режиме статического взвешивания (в скобках указано соответствие пунктов ГОСТ OIML R 76-1-2011):
 - полуавтоматическое (Т 2.7.2.2) и автоматическое (Т 2.7.2.3) устройство установки на нуль;
 - устройство автоматического слежения за нулем (Т 2.7.3);
 - устройство первоначальной установки на нуль (Т 2.7.2.4);
 - устройство уравновешивания тары устройство выборки массы тары (Т 2.7.2.4.1);
 - режим работы многоинтервальных весов (Т.3.2.6).
 - устройство для мониторинга и самодиагностики промышленных весов;
- устройство формирования низковольтных сигналов в момент достижения настраиваемых значений веса;

Маркировочная табличка весов содержит следующие основные данные:

- торговая марка изготовителя или его полное наименование;
- знак утверждения типа;
- обозначение типа и модификации весов;
- заводской (серийный) номер весов (на каждом ГПУ, если применимо);
- параметры электропитания;
- номер ТУ;
- страна производитель.
- класс точности весов для каждого режима взвешивания.
- Метрологические характеристики в режиме взвешивания в движении:
 - максимальная нагрузка (Мах);
 - минимальная нагрузка (Min);
 - цена деления (d);
 - максимальная рабочая скорость (V_{max});
 - минимальная рабочая скорость (V_{min}).
- Метрологические характеристики в статическом режиме взвешивания:
 - максимальная нагрузка (Мах);
 - минимальная нагрузка (Min);
 - -поверочное деление (е).
 - Диапазон температур ГПУ (если применимо);
 - Диапазон температур прибора (если применимо);
 - Год выпуска;
- Номер версии (идентификационный номер) ПО

Буквенно-цифровое обозначение типа весов наносится на маркировочную табличку фотохимическим методом, цифровое обозначение заводского номера весов - ударным способом, что обеспечивает сохранность в процессе эксплуатации и идентификацию весов.

Общий вид приборов, УОАД, а также схема пломбировки, представлены на рисунках 2-3

изготовления блока согласования, клеммной коробки, БТС4/БС/МПР используется идентичный корпус)

BT-013 БТС4/БС/МПР Рисунок 2 – Общий вид весоизмерительного прибора ВТ-013, МПР, БТС4/БС, (для Схема пломбировки от несанкционированного доступа, место нанесения знака поверки для весов автомобильных Нью-Тонн приведена на рисунке 3.

Рисунок 3 — Схема пломбировки от несанкционированного доступа, место нанесения знака поверки для весов автомобильных Нью-Тонн

Программное обеспечение

Программное обеспечение (далее – Π O) весов является встроенным и используется в стационарной (закрепленной) аппаратной части с определенными программными средствами. Защита от несанкционированного доступа к настройкам и данным измерений обеспечивается невозможностью изменения Π O без применения специализированного оборудования изготовителя.

Защита от несанкционированного доступа к настройкам и данным измерений обеспечивается защитной пломбой, которая ограничивает доступ к переключателю настройки и регулировки. Изменение метрологически значимых параметров, настройка и регулировка, не могут быть осуществлены без нарушения защитной пломбы.

Для контроля изменений метрологически значимых параметров предусмотрен несбрасываемый счетчик (электронная пломба), значение которого меняется при изменении метрологически значимых параметров регулировки и настройки и могут быть выведены на дисплей (в соответствии с эксплуатационной документацией на прибор).

Защита ПО от непреднамеренных и преднамеренных воздействий соответствует уровню «высокий» по Р 50.2.077-2014.

Идентификационные данные ПО приведены в таблице 2.

Таблица 2 – Идентификационные данные программного обеспечения

Обозначение	Идентификационное	Номер версии	Цифровой	Другие	
модификации	наименование ПО	(идентификационный	идентификатор	идентификационные	
прибора		номер) ПО	ПО	данные	
				(если они имеются)	
BT-013	-	не ниже V5.11.xy	6320	-	
БТС4	-	V.1.0	-	-	
МПР	-	V 1.0.xy	-	-	
* Примечание: «х» и «у» не относятся к метрологически значимой части ПО					

Метрологические и технические характеристики

1. Статический режим

Основные метрологические характеристики весов в статическом режиме взвешивания: максимальная нагрузка (Мах), минимальная нагрузка (Міп), поверочный интервал весов (е), действительная цена деления (шкалы) (d), число поверочных интервалов (n) приведены в таблицах 3 и 4.

Таблица 3 – Метрологические характеристики

Наименование характеристики	Значение
Класс точности по ГОСТ OIML R 76 - 1-2011	III
Показания индикации массы, не более	Max + 9e
Пределы допускаемой погрешности устройства установки на нуль	±0,25e
Диапазон установки на нуль (суммарный) устройств установки нуля и	
слежения за нулём, % от Мах, не более	4
Диапазон первоначальной установки на нуль, % от Мах, не более	20
Диапазон выборки массы тары (Т-), % от Мах	от 0 до 100
Пределы допускаемой погрешности для нагрузки m, mpe, при поверке (в	
эксплуатации):	
$- Min \le m \le 500e$	$\pm 0.5e (\pm 1.0e)$
$-500e \le m \le 2000e$	$\pm 1e (\pm 2.0e)$
$-2000e \le m \le Max$	$\pm 1,5e (\pm 3,0e)$

Таблица 4 – Метрологические характеристики

Tuomiga Triosponosis reekito napaki epitesis	Летрологичесь	трологические характеристики		
Обозначение модификации	Min, T	Max, T (Max ₁ /Max ₂ / Max ₃)	$e = d, \kappa \Gamma$ $(e_1/e_2/e_3)$	$n \choose (n_1/n_2/n_3)$
1	2	3	4	5
Нью-Тонн-20-[2]-[3]-[4]-[5]-[6]-[7]	0,4	20	10	2000
Нью-Тонн-30-[2]-[3]-[4]-[5]-[6]-[7]	0,2	30	10	3000
Нью-Тонн-40-[2]-[3]-[4]-[5]-[6]-[7]	0,2	40	10	4000
Нью-Тонн-40-[2]-[3]-[4]-[5]-[6]-[7]	0,2	30/40	10/20	3000/2000
Нью-Тонн-50-[2]-[3]-[4]-[5]-[6]-[7]	0,4	50	20	2500
Нью-Тонн-50-[2]-[3]-[4]-[5]-[6]-[7]	0,2	50	10	5000
Нью-Тонн-50-[2]-[3]-[4]-[5]-[6]-[7]	0,2	30/50	10/20	3000/2500
Нью-Тонн-60-[2]-[3]-[4]-[5]-[6]-[7]	0,4	60	20	3000
Нью-Тонн-60-[2]-[3]-[4]-[5]-[6]-[7]	0,2	30/60	10/20	3000/3000
Нью-Тонн-60-[2]-[3]-[4]-[5]-[6]-[7]	0,2	40/60	10/20	4000/3000
Нью-Тонн-60-[2]-[3]-[4]-[5]-[6]-[7]	0,2	50/60	10/20	5000/3000
Нью-Тонн-60-[2]-[3]-[4]-[5]-[6]-[7]	0,2	35/60	10/20	3500/3000
Нью-Тонн-80-[2]-[3]-[4]-[5]-[6]-[7]	0,4	80	20	4000
Нью-Тонн-80-[2]-[3]-[4]-[5]-[6]-[7]	0,4	80	20	1600
Нью-Тонн-80-[2]-[3]-[4]-[5]-[6]-[7]	0,2	30/60/80	10/20/50	3000/3000/1600

000
000
/1600
)
)
/2000
/2000
500
/1600
)
/2400
/2400
/2400
)
/2400
/2400
/2400
/3000
)
/3000
/3000
/5000
/3000
/24) /24 /24 /30) /30 /50

Весы с числом поверочных интервалов п более 3000 устанавливаются в защищенных от механических и атмосферных воздействий сооружений.

2. Режим взвешивания в движении

Значения Мах, Міп, цены деления d, класса точности по ГОСТ 33242-2015 при определении полной массы ТС и при определении нагрузки на одиночную ось или на группу осей для модификаций весов приведены в таблице 5.

Таблица 5 – Метрологические характеристики

таолица 3 — метрологические характер	HCTHK.	K1			
	Метрологические характеристики				
				Класс точности	Класс точности
				по ГОСТ	по ГОСТ
Обозначение модификации	Min,	Max,	d = e,	33242-2015	33242-2015
	T	T	ΚΓ	нагрузки на	при определении
				одиночную ось	полной массы ТС
				или группу осей	
Нью-Тонн-20-[2]-[3]-[4]-[5]-[6]-[7]	0,5	20	10		
Нью-Тонн-30-[2]-[3]-[4]-[5]-[6]-[7]	0,5	30	10		
Нью-Тонн-40-[2]-[3]-[4]-[5]-[6]-[7]	0,5	40	10		
Нью-Тонн-50-[2]-[3]-[4]-[5]-[6]-[7]	0,5	50	20		
Нью-Тонн-50-[2]-[3]-[4]-[5]-[6]-[7]	0,5	50	10		
Нью-Тонн-60-[2]-[3]-[4]-[5]-[6]-[7]	0,5	60	20	B, C	0,5; 1
Нью-Тонн-80-[2]-[3]-[4]-[5]-[6]-[7]	0,5	80	20		
Нью-Тонн-80-[2]-[3]-[4]-[5]-[6]-[7]	0,5	80	50		
Нью-Тонн-100-[2]-[3]-[4]-[5]-[6]-[7]	0,5	100	20		
Нью-Тонн-100-[2]-[3]-[4]-[5]-[6]-[7]	0,5	100	50		
Нью-Тонн-120-[2]-[3]-[4]-[5]-[6]-[7]	0,5	120	50		
Нью-Тонн-150-[2]-[3]-[4]-[5]-[6]-[7]	0,5	150	50		

Значения нагрузок, пределов допускаемых погрешностей при статическом взвешивании при увеличивающихся или уменьшающихся нагрузках при определении полной массы ТС должны соответствовать указанным в таблице 6.

Таблица 6 - Метрологические характеристики

Класс точности при	Нагрузка т,	Пределы допускаемых погрешностей		
определении полной	выраженная в ценах	при первичной	при периодической	
массы ТС	деления d	поверке	поверке	
	от 50 до 500 включ.	±0,5d	±1.0d	
0,5; 1	св. 500 до 2000 включ.	±1.0d	±2,0d	
	св. 2000 до 5000 включ.	±1,5d	±3,0d	

МРЕ при определении полной массы ТС в движении не превышают большего из следующих значений:

- а) рассчитанному в соответствии с таблицей 7 и округленного до ближайшего значения цены деления;
- б) $1 \cdot d \cdot n$ при первичной поверке, $2 \cdot d \cdot n$ при периодической поверке, где n число осей при суммировании.

Таблица 7 – Метрологические характеристики

Класс точности при определении	Процент от условно истинного значения полной массы ТС		
полной массы ТС по	при первичной поверке	при периодической поверке	
ГОСТ 33242-2015			
0,5	±0,25	±0,5	
1	±0,5	±1,0	

Пределы допускаемой погрешности (MPE) при определении нагрузки на одиночную ось двухосного контрольного TC с жесткой рамой в движении не превышают большего из следующих значений:

- а) значения в соответствии с таблицей 8, округленного до ближайшего значения цены деления;
- б) $1 \cdot d$ при первичной поверке, $2 \cdot d$ при периодической поверке.

Таблица 8 - Метрологические характеристики

Класс точности при определении	чности при определении Процент от условно истинного значения статиче			
нагрузки на одиночную ось по	эталонной нагрузки на одиночную ось			
ГОСТ 33242-2015	при первичной поверке	при периодической поверке		
В	±0,5	±1,0		
С	±0,75	±1,5		

Пределы допускаемого отклонения (MPD) от скорректированного среднего значения нагрузки на ось или от скорректированного среднего значения на группу осей для всех типов контрольных ТС кроме контрольного двухосного ТС с жесткой рамой в движении не превышают большего из следующих значений:

- а) значения в соответствии с таблицей 9, округленного до ближайшего значения цены деления;
- б) $1 \cdot d \cdot n$ при первичной поверке, $2 \cdot d \cdot n$ при периодической поверке,

где n – число осей в группе, для одиночных осей n = 1.

Таблица 9 – Метрологические характеристики

	1 1		
Класс точности при определении	Процент от скорректированного среднего значения		
нагрузки на одиночную ось или	нагрузки на одиночную ось или скорректированного		
группу осей по ГОСТ 33242-2015	среднего значения нагрузки на группу осей		
	при первичной поверке	при периодической поверке	
В	±1,0	±2,0	
С	±1,5	±3,0	

Таблица 10 – Основные технические характеристики

Наименование характеристики	Значение
1	2.
Максимальная рабочая скорость (V _{max}), км/ч, не более	10
Минимальная рабочая скорость (V _{min}), км/ч, не более	2
Направление движения при взвешивании	двустороннее
Диапазон рабочих температур для ГПУ, °С, с датчиками:	двустороннее
- SL6;	от -10 до +40
- WBK-20 C4, WBK-25 C4, WBK-30 C4, WBK-50 C4;	от -20 до +50
- SBM11, SH8, SHM9, SH3, SBM14, SH2, HM14H1, BM14A, BM14C, BM14G,	01 20 до 130
BM14K, DBM14A, DBM14C, DBM14G, DBM14K, DHM14C, DHM14H1;	от -30 до + 40
- C2A;	от -30 до + 50
- ZSC, ZSE, ZSWF, ZSWFB, ZSWFG, ZSWFGC, ZSKB, ZSFC, ZSF, ZSFN,	01 00 A0 00
ZSFL, ZSFB, ZSFY, ZSL, ZSFGC, ZSNC, WLS; CLC; EDSK, EDSB, EDSC,	
CDL X970-C-3500-30, CDL X970-C-3500-50, WBKC-20, WBKC-25, WBKC-30,	
WBK-20D, WBK-25D, WBK-30D, WBK-50D;	от -40 до +40
- RC3-C3, RC3-C4, WBK-20 C3, WBK-25 C3, WBK-30 C3, WBK-50 C3;	от -40 до +50
- C16A, C16i	от -50 до 50
Диапазон рабочих температур для прибора BT-013, °C	от -10 до +40
Диапазон рабочих температур для блока БТС4, °С	от -50 до +50
Количество секций (грузоприемных платформ) в составе ГПУ весов	от 1 до 5
Параметры электропитания от сети переменного тока:	
- напряжение, В	от 187 до 242
- частота, Гц	от 49 до 51
Потребляемая мощность, В А, не более	15
Продолжение таблицы 10	
1	2
Габаритные размеры платформы ГПУ весов, мм:	
- длина не более	30 000
- ширина не более	10 000
Масса ГПУ весов, кг, не более	18000
Средний срок службы, лет, не менее	15

Знак утверждения типа

наносится на маркировочную табличку, расположенную на корпусе прибора и ГПУ весов, а также типографским способом на титульный лист руководства по эксплуатации.

Комплектность средства измерений

Таблица 11 – Комплектность средства измерений

	F	
Наименование	Обозначение	Количество
Весы автомобильные Нью-Тонн	_	1 шт.
Руководство по эксплуатации (Паспорт)	РЭ 4274-014-48254431-2021	1 экз.
Методика поверки весов	-	1 экз.

Сведения о методиках (методах) измерений

приведены в разделе 2 «Использование по назначению» Руководства по эксплуатации на весы автомобильные Нью-Тонн.

Нормативные документы, устанавливающие требования к средству измерения

Приказ Росстандарта от 4 июня 2022 г. № 1622 «Об утверждении Государственной поверочной схемы для средств измерений массы»;

ГОСТ OIML R 76-1-2011 «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания»;

ГОСТ 33242-2015 «Межгосударственный стандарт. Весы автоматические для взвешивания транспортных средств в движении и измерения нагрузок на оси. Метрологические и технические требования. Испытания»;

ТУ 28.29.31-014-48254431-2021 «Весы автомобильные Нью-Тонн. Технические условия».

Правообладатель

Общество с ограниченной ответственностью «Новые автоматизированные измерительные системы» (ООО «НАИС»)

ИНН 6162026356

Адрес юридического лица: 344001, Ростовская область, г. Ростов-на-Дону, ул. Республиканская, д. 135

Изготовители

Общество с ограниченной ответственностью «Новые автоматизированные измерительные системы» (ООО «НАИС»)

ИНН 6162026356

Адрес юридического лица: 344001, Ростовская область, г. Ростов-на-Дону, ул. Республиканская, д. 135

Место осуществления деятельности:

344002, Ростовская область, г. Ростов-на-Дону, ул. Шоссейная, д. 47В.

346889, Ростовская область, г. Батайск, ул. Краснодарская, д. 1-а.

Телефон: 8 (863) 265-82-70

Индивидуальный предприниматель Морозов Вячеслав Павлович ИНН 616200509896

Адрес юридического лица :344010, Ростовская область, г. Ростов-на-Дону,

ул. Лермонтовская, дом № 89, кв.152 Место осуществления деятельности:

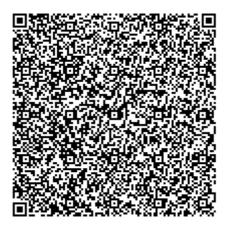
344002, Ростовская область, г. Ростов-на-Дону, ул. Шоссейная, д. 47В.

346889, Ростовская область, г. Батайск, ул. Краснодарская, д. 1-а.

Тел./факс: 8 (863) 265-82-70, 265-82-72

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Ростовской области» (ФБУ «Ростовский ЦСМ»)


ИНН 6163000840

Адрес: 344000, Ростовская область, г. Ростов-на-Дону, пр. Соколова, д. 58/173

Телефон: (863)290-44-88, факс: (863)291-08-02

E-mail: info@rostcsm.ru

Уникальный номер записи в реестре аккредитованных лиц № 30042-13.

