ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

приложение к сертификату об утверждении типа средств измерений

OT 31 mail 2022 r. № 15261

Наименование типа средств измерений и их обозначение: Вольтметры универсальные В7-53.

Назначение и область применения:

Вольтметры универсальные В7-53 (далее – вольтметры) предназначены для измерения напряжения постоянного и переменного тока, сопротивления постоянному току, силы постоянного и переменного тока, частоты и периода сигналов.

Область применения: измерение электрических величин при настройке, проверке и эксплуатации радиоэлектронной аппаратуры в различных областях хозяйственной деятельности.

Описание:

*

Принцип действия вольтметров заключается в преобразовании измеряемой величины в нормированное значение напряжения постоянного тока от 0 до 2 В с последующим его преобразованием методом широтно-импульсной модуляции и вычисления значения измеряемой величины с учетом коэффициентов, полученных при калибровке вольтметров. При измерении временных характеристик напряжения переменного тока (частота, период) входной сигнал преобразуется в последовательность прямоугольных импульсов с последующим подсчетом их числа за единицу времени или подсчетом числа импульсов эталонной частоты за период их следования.

Вольтметры выпускают в двух исполнениях: В7-53 и В7-53/1.

Вольтметры исполнения В7-53 имеют выход в канал общего пользования (далее – КОП), в вольтметрах исполнения В7-53/1 выход в КОП отсутствует.

Вольтметры по отдельному заказу могут иметь в составе принадлежности: высоковольтный делитель напряжения с шунтами «К2», «К3», пробник высокочастотный, шунт «10 А».

Программное обеспечение (ПО) вольтметров является встроенным, предназначенным для сбора, обработки, отображения, хранения настроек и передачи информации об измеряемой величине. К метрологически значимому относится все ПО. Влияние ПО учтено при нормировании метрологических характеристик.

Фотографии общего вида средств измерений представлены в приложении 1.

Схема (рисунок) с указанием мест для нанесения знаков поверки средств измерений представлена в приложении 2.

Схема пломбировки от несанкционированного доступа представлена в приложении 3.

Обязательные метрологические требования: представлены в таблице 1.

КОПИЯ ВЕРНА Гл. инженер В асилевский В. В.

	Значение		
Наименование	формат индикации 4 ½	формат индикации 5 ½	
Измерение напряжения постоянного тока	:		
Диапазон измерений	от 10 мкВ до 1000 В		
Пределы измерений	200 мВ; 2; 20; 200; 1000 В		
Пределы допускаемой основной относительной погрешности, %:			
на пределах измерений 200 мВ; 2; 20; 200 В		$\pm [0.04 + 0.005 \cdot (U_{\kappa} / U_{x} - 1)]$	
на пределе измерений 1000 В	$\pm[0.05 + 0.02 \cdot (U_{\kappa}/U_{x}-1)]$	$\pm[0.05 + 0.01 \cdot (U_{\kappa}/U_{\kappa}-1)]$	
Измерение напряжения постоянного тока	с делителем напряжения	высоковольтным (ДНВ):	
Диапазон измерений	от 1 д	о 30 кВ	
Пределы измерений	200 мВ; 2; 20; 200 В		
Пределы допускаемой основной			
относительной погрешности, %:			
с ДНВ	±[0,4 + 0,04	$\cdot (U_{\kappa}/U_{\rm B}-1)],$	
	где U _в =	0,001 ⋅ Uднв	
с ДНВ и шунтом «К2»		$\cdot (U_{\kappa}/U_{\rm B}-1)],$	
- A),0005·U _{ДНВ}	
с ДНВ и шунтом «К3»		$\cdot (U_{\kappa}/U_{\rm B}-1)],$	
o Arib ii myirrem wae ii	$\Gamma_{\rm He} U_{\rm B} = 0.0002 \cdot U_{\rm JHB}$		
Измерение среднеквадратического значе		, A:-	
Диапазон измерений	от 1 мВ до 700 В		
Диапазон частот	от 20 Гц до 100 кГц		
Пределы измерений	200 мВ; 2; 2	20; 200; 700 B	
Пределы допускаемой основной			
относительной погрешности, %:			
на пределах измерений 200 мВ; 2; 20; 200 В			
в диапазоне частот:			
от 20 до 40 Гц не включ.	$\pm[0.8 + 0.1 \cdot (U_{\kappa}/U_{x} - 1)]$	_	
от 40 Гц до 10 кГц включ.	$\pm [0.5 + 0.1 \cdot (U_{\kappa} / U_{x} - 1)]$	_	
св. 10 до 20 кГц	$\pm [0.8 + 0.1 \cdot (U_{\kappa} / U_{x} - 1)]$	_	
св. 20 до 50 кГц	$\pm [3.0 + 0.15 \cdot (U_{\kappa} / U_{x} - 1)]$	-	
на пределах измерений 200 мВ; 2; 20 В			
в диапазоне частот от 50 до 100 кГц	$\pm [5,0+0,4\cdot(U_{\kappa}/U_{\kappa}-1)]$	_	
на пределе измерений 700 В			
в диапазоне частот от 40 Гц до 10 кГц	$\pm [0.8 + 0.25 \cdot (U_{K}/U_{X} - 1)]$	_	
Измерение среднеквадратического значе			
ным пробником:			
Пределы измерений	200 мІ	B; 2; 20 B	
Диапазон частот	от 50 кГц	до 1000 МГц	
Диапазон измерений			
в диапазоне частот:			
от 50 кГц до 30 МГц	от 0,1	до 5,0 В	
от 30 до 50 МГц		$(1,5\cdot10^8/F)$ B	
от 50 до 1000 МГц		до 3,0 В	

относительной погрешности в диапазоне частот, %: от 50 к Γ ц до 50 М Γ ц		Значение		
относительной потрешности в диапазоне частот; %: от 50 кП дло 50 МГ д св. 50 до 300 мО да тр. св. 50 до 300 мО да тр. св. 800 до 800 мО да тр. да тредел измерений до то 1 м да тредел измерений до да тредел измерений до да то тредности, % диапазон измерений до да то то то то то да тредности, % диапазон измерений до да то то то да то то да то то да то да то да то да то то да то да то да то то да то	Наименование			
В диапазоне частот, %: от 50 к1 пд 50 М1 п от 50 м1 пд 50 М1 п св. 50 до 300 М1 п св. 50 до 300 М1 п св. 300 до 800 м1 до 80	Пределы допускаемой основной			
от 50 кГп до 50 МГп	•			
св. 50 до 300 МГц ±[10+3·(Un/Ux-1)], где Un = 3 В св. 300 до 800 МГц ±[20+2·(Un/Ux-1)], где Un = 3 В св. 800 до 1000 МГц ±[30+2·(Un/Ux-1)], где Un = 3 В Измерение силы постоянного тока: Диапазон измерений Предел измерений 0т 1 мА до 2 А Пределы допускаемой основной относительной погрешности, % ±[0,15+0,01·(Ix/Ix-1)] ±[0,15+0,005·(Ix/Ix-1)] Измерение силы постоянного тока с шунтом «10 А»: 10 А Иределы допускаемой основной относительной погрешности, % ±[0,15+0,01·(Ix/Ix-1)] ±[0,15+0,005·(Ix/Ix-1)] Измерение среднеквадратического значения силы переменного тока: Диапазон измерений 0 Т 2 до 10 А Измерение среднеквадратического значения силы переменного тока: Диапазон измерений 2 А Измерение среднеквадратического значения силы переменного тока: Диапазон измерений 2 А Измерение сордснеквадратического значения силы переменного тока: Диапазон измерений 2 А Измарение сордснеквадратического значения силы переменного тока: Диапазон измерений 2 А Пределы допускаемой основной относительной погрешности, % ±[0,8+0,1·(Ix/Ix-1)] — Измерение сордснекважной основной относительной погрешности, %: 0 Т 1 Ом до 2 ГОм <t< td=""><td>в диапазоне частот, %:</td><td></td><td></td></t<>	в диапазоне частот, %:			
св. 300 до 800 МГц	от 50 кГц до 50 МГц	$\pm [10 + 0.6 \cdot (U_{\pi} / U_{x})]$	$[n-1]$, где $U_n = 5 B$	
св. 800 до 1000 МГц ±[30 + 2·(Un/Ux − 1)], где Un = 3 В Измерение силы постоянного тока: Диапазон измерений 2 A Пределы допускаемой основной относительной погрешности, % ±[0,15 + 0,01·(I _w /I _x − 1)] ±[0,15 + 0,005·(I _w /I _x − 1)] Диапазон измерений пределы допускаемой основной относительной погрешности, % 0 T 2 до 10 А 10 А Пределы допускаемой основной относительной погрешности, % ±[0,4 + 0,02·(I _w /I _x − 1)] ±[0,4 + 0,02·(I _w /I _x − 1)] Измерение среднеквадратического значения силы переменного тока: далазон измерений 0 T 10 мА до 2 А Измалазон измерений 0 T 40 Гп до 5 кГп 2 A Пределы допускаемой основной относительной погрешности, % ±[0,8 + 0,1·(I _w /I _x − 1)] − Измерение сопротивления постоянному току: Диапазон измерений 0 T 10 м до 2 ГОм 1 Пределы допускаемой основной относительной погрешности, %: ±[0,8 + 0,1·(I _w /I _x − 1)] − Измерение сопротивления постоянному току: 200 Ом; 2; 20; 200; 2000 кОм; 20 МОм; 20 МОм; 20 ГОм 10 до	св. 50 до 300 МГц			
Измерение силы постоянного тока: От 1 мА до 2 А Диапазон измерений 2 А Предел измерений 2 А Пределы допускаемой основной относительной потрешности, % ±[0,15 + 0,01 · (I _w /I _x − 1)] ±[0,15 + 0,005 · (I _w /I _x − 1)] Измерение силы постоянного тока с шунтом «10 А»: Диапазон измерений 0 T 2 до 10 А Пределы допускаемой основной относительной погрешности, % ±[0,4 + 0,02 · (I _w /I _x − 1)] Измерение среднеквадратического значения силы переменного тока: От 10 мА до 2 А Диапазон измерений 0 T 40 Гп до 5 кГп Пределы допускаемой основной относительной погрешности, % ±[0,8 + 0,1 · (I _w /I _x − 1)] − Измерение сопротивления постоянному току: Диапазон измерений 0 T 1 Ом до 2 ГОм 1 Пределы допускаемой основной относительной погрешности, %: ±[0,8 + 0,1 · (I _w /I _x − 1)] − Измерение сопротивления постоянному току: 200 Ом; 2; 20; 200; 2000 кОм; 20 МОм; 2 ГОм ±[0,15 + 0,02 · (R _w / R _x − 1)] ±[0,15 + 0,006 · (R _w / R _x − 1)] Пределы допускаемой основной относительной погрешности, %: ±[0,15 + 0,02 · (R _w / R _x − 1)] ±[0,15 + 0,006 · (R _w / R _x − 1)] ±[0,15 + 0,006 · (R _w / R _x − 1)] ±[0,15 + 0,006 · (R _w / R _x − 1)] ±[0,15 + 0,002 · (R _w / R _x − 1)	св. 300 до 800 МГц	$\pm [20 + 2 \cdot (U_n / U_x - 1)],$ где $U_n = 3$ В		
Диапазон измерений 2 A Предел измерений 2 A Пределы допускаемой основной относительной погрешности, % ±[0,15 + 0,01·(I _k /I _x − 1)] ±[0,15 + 0,005·(I _k /I _x − 1)] Измерение силы постоянного тока с шунтом «10 A»: Диапазон измерений 10 A Пределы допускаемой основной относительной погрешности, % ±[0,4 + 0,02·(I _k /I _x − 1)] Измерение среднеквадратического значения силы переменного тока: Диапазон измерений 0 T1 0 M до 2 A Диапазон частот 0 T4 0 T1 до 5 кГп Пределы допускаемой основной относительной погрешности, % ±[0,8 + 0,1·(I _k /I _x − 1)] Измерение сопротивления постоянному току: Диапазон измерений 20 MOM ±[0,8 + 0,1·(I _k /I _x − 1)] − Измерение опротивления постоянному току: На пределы допускаемой основной относительной погрешности, % ±[0,10 + 0,000 (R _k / R _k − 1)] На пределы измерений 20 MOM ±[0,5 + 0,002·(R _k / R _k − 1)] ±[0,15 + 0,006·(R _k / R _k − 1)] Измерение частоты синусоидальных и импульсных сигналов: Диапазон измерений 1 000 кГп 0 т 0,5 до 30 В Диапазон измерений 0 т1 до 30 В Диарение частоть випиульсов, не менее 0,5 мкс Скаживость импульсов, не более Пределы допускаемой основной основной 0 т1 до 30 В Пределы допускаемой основной 0 сновной 0 т1 до 30 В Пределы допускаемой основной 0 сновной 0 т1 до 30 В Пределы допускаемой основной 0 сновной 0 т1 до 30 В	св. 800 до 1000 МГц	$\pm[30 + 2\cdot(U_n/U_x - 1)]$, где $U_n = 3$ В		
Пределы допускаемой основной относительной погрешности, % ±[0,15 + 0,01 · (I _k /I _x − 1)] ±[0,15 + 0,005 · (I _k /I _x − 1)] измерений поготоянного тока с шунтом «10 А»: Диапазон измерений по х до 10 А предел измерений по х долускаемой основной относительной погрешности, % ±[0,4 + 0,02 · (I _k /I _x − 1)] измерение среднеквадратического значения силы переменного тока: Диапазон измерений от 10 мА до 2 А диапазон измерений 2 А пределы допускаемой основной относительной погрешности, % ±[0,8 + 0,1 · (I _k /I _x − 1)] — 1 до 5 кГц пределы допускаемой основной относительной погрешности, % ±[0,8 + 0,1 · (I _k /I _x − 1)] — 2 до 10 м до 2 Гом пределы допускаемой основной относительной погрешности, % ±[0,8 + 0,1 · (I _k /I _x − 1)] — 2 до 0 ом; 2; 20; 200; 2000 кОм; 20 м до 2 Гом пределы допускаемой основной относительной погрешности, %: на пределы домускаемой основной относительной погрешности, %: на пределы домускаемой основной относительность измерений 20 Ом; 2; 20; 200; 2000 кОм; 20 МОм; 2 ГОм ±[0,5 + 0,02 · (R _k / R _k − 1)] ±[0,15 + 0,006 · (R _k / R _k − 1)] измерение частоты синусоидальных и импульсных сигналов: Диапазон измерений 1 000 000 Гц 1 до 100 кГц от 100 кГц от 100 кГц от 1,00	Измерение силы постоянного тока:			
Пределы допускаемой основной относительной погрешности, % ±[0,15 + 0,01 · (I _k /I _x − 1)] ±[0,15 + 0,005 · (I _k /I _x − 1)] измерение силы постоянного тока с шунтом «10 А»: Диапазоп измерений 10 А Пределы допускаемой основной относительной погрешности, % ±[0,4 + 0,02 · (I _k /I _x − 1)] Измерение среднеквадратического значения силы переменного тока: Диапазоп измерений 2 А Диапазон измерений 2 А Предел измерений 2 А Предел измерений 2 А Пределы допускаемой основной относительной погрешности, % ±[0,8 + 0,1 · (I _k /I _x − 1)] Измерение сопротивления постоянному току: Диапазон измерений 0 ОМ до 2 ГОм Измерение сопротивления постоянному току: Диапазон измерений 0 ОМ до 2 ГОм Измерение допускаемой основной относительной погрешности, % ±[0,8 + 0,1 · (I _k /I _x − 1)] − — 1 (1,5 + 0,02 · (R _k / R _x − 1)) ± (1,5 + 0,006 · (R _k / R _x − 1)) + ± (1,5 + 0,002 · (R _k / R _x − 1)) + ± (Диапазон измерений	от 1 мА до 2 А		
относительной погрешности, % ±[0,15 + 0,01 · (I ₈ /I _x − 1)] ±[0,15 + 0,005 · (I ₈ /I _x − 1)] Измерение силы постоянного тока с шунтом «10 А»: Диапазон измерений Предел измерений Пределы допускаемой основной относительной погрешности, % ±[0,4 + 0,02 · (I ₈ /I _x − 1)] Измерение среднеквадратического значения силы переменного тока: Диапазон измерений Предел измерений Пределы допускаемой основной относительной погрешности, % ±[0,8 + 0,1 · (I ₈ /I _x − 1)] Измерение сопротивления постоянному току: Диапазон измерений Пределы измерений От 1 Ом до 2 ГОм Пределы допускаемой основной относительной погрешности, % ±[0,8 + 0,1 · (I ₈ /I _x − 1)] Пределы измерений От 1 Ом до 2 ГОм Пределы допускаемой основной относительной погрешности, %: На пределах измерений 200 Ом; 2; 20; 200; 2000 кОм ±[0,15 + 0,02 · (R _x / R _x − 1)] на пределе измерений 2 ГОм ±[0,5 + 0,02 · (R _x / R _x − 1)] Измерение частоты сипусоидальных и импульсных сигналов: Синусоидального, в диапазоне частот: от 20 Гц до 100 кГц от 100 кГц до 1 МГц от 0,5 до 150 В от 100 кГц до 1 МГц от 1 до 150 В от 100 кГц до 1 МГц от 1 до 150 В от 100 кГц до 1 МГц От 1 до 100 кС Длительность импульсов, не менее Скважность импульсов, не более Пределы допускаемой основной	Предел измерений	2	A	
Измерение силы постоянного тока с шунтом «10 А»: диапазон измерений от 2 до 10 А Предел измерений 10 А 10 А Пределы допускаемой основной относительной погрешности, % ±[0,4 + 0,02 (I _κ /I _x − 1)] Измерение среднеквадратического значения силы переменного тока: Диапазон измерений от 10 м А до 2 А Диапазон частот 0т 40 Гп до 5 кГп 1 до 5 кГп Пределы допускаемой основной относительной погрешности, % ±[0,8 + 0,1 (I _к /I _x − 1)] − Измерение сопротивления постоянному току: Диапазон измерений 200 Ом; 2; 20; 200; 2000 кОм; 20 МОм; 2 ГОм Пределы допускаемой основной относительной погрешности, %: 200 Ом; 2; 20; 200; 2000 кОм; 20 МОм; 2 ГОм ±[0,15 + 0,02 (R _κ /R _κ − 1)] ±[0,15 + 0,006 (R _κ /R _κ − 1)] на предела измерений 20 МОм ±[0,5 + 0,02 (R _κ /R _κ − 1)] ±[0,5 + 0,006 (R _κ /R _κ − 1)] 10,5 + 0,006 (R _κ /R _κ − 1)] измерение измерений 2 ГОм ±[0,5 + 0,002 (R _κ /R _κ − 1)] ±[0,5 + 0,002 (R _κ /R _κ − 1)] ±[0,5 + 0,002 (R _κ /R _κ − 1)] Измарение частоты сигусоидальных и импульсных сигналов: 1 000 000 Гц 1 до 150 В 0 т 1	Пределы допускаемой основной			
Измерение силы постоянного тока с шунтом «10 А»: диапазон измерений от 2 до 10 А Предел измерений 10 А 10 А Пределы допускаемой основной относительной погрешности, % ±[0,4 + 0,02 (I _κ /I _x − 1)] Измерение среднеквадратического значения силы переменного тока: Диапазон измерений от 10 м А до 2 А Диапазон частот 0т 40 Гп до 5 кГп 1 до 5 кГп Пределы допускаемой основной относительной погрешности, % ±[0,8 + 0,1 (I _к /I _x − 1)] − Измерение сопротивления постоянному току: Диапазон измерений 200 Ом; 2; 20; 200; 2000 кОм; 20 МОм; 2 ГОм Пределы допускаемой основной относительной погрешности, %: 200 Ом; 2; 20; 200; 2000 кОм; 20 МОм; 2 ГОм ±[0,15 + 0,02 (R _κ /R _κ − 1)] ±[0,15 + 0,006 (R _κ /R _κ − 1)] на предела измерений 20 МОм ±[0,5 + 0,02 (R _κ /R _κ − 1)] ±[0,5 + 0,006 (R _κ /R _κ − 1)] 10,5 + 0,006 (R _κ /R _κ − 1)] измерение измерений 2 ГОм ±[0,5 + 0,002 (R _κ /R _κ − 1)] ±[0,5 + 0,002 (R _κ /R _κ − 1)] ±[0,5 + 0,002 (R _κ /R _κ − 1)] Измарение частоты сигусоидальных и импульсных сигналов: 1 000 000 Гц 1 до 150 В 0 т 1	относительной погрешности, %	$\pm[0,15+0,01\cdot(I_{\kappa}/I_{x}-1)]$	$\pm[0,15+0,005\cdot(I_{\kappa}/I_{x}-1)]$	
Диапазон измерений 10 A Предел измерений 10 A Пределы допускаемой основной отно- сительной погрешности, % ±[0,4 + 0,02 · (I _κ /I _x − 1)] Измерение среднеквадратического значения силы переменного тока: Диапазон измерений 0т 10 мА до 2 А Диапазон частот 0т 40 Гп до 5 кГп Предел измерений 2 А Предел измерений 0т 1 Ом до 2 ГОм Пределы допускаемой основной отно- сительной погрешности, % ±[0,8 + 0,1 · (I _κ /I _x − 1)] − Измерение сопротивления постоянному току: Диапазон измерений 0т 1 Ом до 2 ГОм Пределы допускаемой основной отно- относительной погрешности, %: на пределы допускаемой основной отностельной погрешности, %: на пределы допускаемой основной относительной погрешности, %: на предела измерений 2 ГОм ±[0,5 + 0,02 · (R _κ / R _x − 1)] ±[0,5 + 0,006 · (R _κ / R _x − 1)] измерение частоты синусоидальных и импульсных сигналов: Диапазон измерений 1 Пом до 2 ГОм ±[0,5 + 0,002 · (R _κ / R _x − 1)] ±[0,5 + 0,006 · (R _κ / R _x − 1)] измерение частоты синусоидальных и импульсных сигналов: Диапазон измерений 1 ГОм ±[0,5 + 0,002 · (R _к / R _x − 1)] ±[0,5 + 0,002 · (R _к / R _x − 1)] измерение частоты синусоидальных и импульсных сигналов: Диапазон измерений 1 1 000 000 Гп Напряжение яходного сигнала: синусоидального, в диапазоне частот: от 20 Гп до 100 кГп от 0,5 до 150 В от 100 кГп до 1 МГп от 0,5 до 30 В импульсного, в диапазоне частот: от 20 Гп до 100 кГп от 1 до 30 В Длительность импульсов, не менее Скважность импульсов, не более Пределы допускаемой основной	Измерение силы постоянного тока с шунт			
Пределы допускаемой основной отно- сительной погрешности, % # [0,4 + 0,02 · (I _k /I _x − 1)] # [0,4 + 0,02 · (I _k /I _x − 1)] # [0,4 + 0,02 · (I _k /I _x − 1)] # [0,4 + 0,02 · (I _k /I _x − 1)] # [0,4 + 0,02 · (I _k /I _x − 1)] # [0,4 + 0,02 · (I _k /I _x − 1)] # [0,4 + 0,02 · (I _k /I _x − 1)] # [0,4 + 0,02 · (I _k /I _x − 1)] # [0,4 + 0,02 · (I _k /I _x − 1)] # [0,4 + 0,02 · (I _k /I _x − 1)] # [0,4 + 0,02 · (I _k /I _x − 1)] # [0,4 + 0,02 · (I _k /I _x − 1)] # [0,4 + 0,02 · (I _k /I _x − 1)] # [0,4 + 0,02 · (I _k /I _x − 1)] # [0,4 + 0,02 · (I _k /I _x − 1)] # [0,4 + 0,02 · (I _k /I _x − 1)] # [0,5 + 0,02 · (I _k /I _x − 1)] # [0,5 + 0,02 · (I _k /I _x − 1)] # [0,5 + 0,00 · (I _k /I _x − 1)] # [0,5 + 0,002 · (I _k /I _x − 1)] # [0,5 + 0,002 · (I _k /I _x − 1)] # [0,5 + 0,006 · (I _k /I _x − 1)] # [0,5 + 0,006 · (I _k /I _x − 1)] # [0,5 + 0,002 · (I _k /I _x − 1)] # [0,5 + 0,006 · (I _k /I _x − 1)] # [0,5 + 0,006 · (I _k /I _x − 1)] # [0,5 + 0,006 · (I _k /I _x − 1)] # [0,5 + 0,002 · (I _k /I _x − 1)] # [0,5 + 0,006 · (I _k /I _x − 1)] # [0,5	Диапазон измерений		o 10 A	
 стельной погрешности, % ±[0,4 + 0,02 · (I_к/I_x − 1)] Измерение среднеквадратического значения силы переменного тока: Диапазон измерений от 10 м А до 2 А Предел измерений 1 до 3 кГц Пределы допускаемой основной относительной погрешности, % 4 [0,8 + 0,1 · (I_к/I_x − 1)] - Измерение сопротивления постоянному току: Диапазон измерений Пределы допускаемой основной относительной погрешности, %: на пределы допускаемой основной относительной погрешности, %: на пределах измерений 200 Ом; 2; 20; 200; 2000 кОм ±[0,15 + 0,02 · (R_k / R_x − 1)] ±[0,15 + 0,006 · (R_k / R_x − 1)] на пределе измерений 20 МОм ±[0,5 + 0,02 · (R_k / R_x − 1)] на пределе измерений 27 ГОм ±[0,5 + 0,002 · (R_k / R_x − 1)] на пределе измерений 27 ГОм ±[0,5 + 0,002 · (R_k / R_x − 1)] на пределе измерений 27 ГОм на пределе измерений 100,5 + 0,002 · (R_k / R_x − 1)] на пределе измерений 100,5 + 0,002 · (R_k / R_x − 1) на пределе измерений 100,5 + 0,002 · (R_k / R_x − 1) на пределе измерений 100,5 + 0,002 · (R_k / R_x − 1) на пределе измерений 100,5 + 0,002 · (R_k / R_x − 1) на пределе измерений 100,5 + 0,002 · (R_k / R_x − 1) на пределе измерений 100,5 + 0,002 · (R_k / R_x − 1) на пределе измерений 100,5 + 0,002 · (R_k / R_x − 1) на пределе измерений 100,5 + 0,002 · (R_k / R_x − 1) на пределе измерений 100,5 + 0,002 · (R_k / R_x − 1) на пределе измерений 100,5 + 0,002 · (R_k / R_x − 1) <	Предел измерений	10) A	
 стельной погрешности, % ±[0,4 + 0,02 · (I_к/I_x − 1)] Измерение среднеквадратического значения силы переменного тока: Диапазон измерений от 10 м А до 2 А Предел измерений 1 до 3 кГц Пределы допускаемой основной относительной погрешности, % 4 [0,8 + 0,1 · (I_к/I_x − 1)] - Измерение сопротивления постоянному току: Диапазон измерений Пределы допускаемой основной относительной погрешности, %: на пределы допускаемой основной относительной погрешности, %: на пределах измерений 200 Ом; 2; 20; 200; 2000 кОм ±[0,15 + 0,02 · (R_k / R_x − 1)] ±[0,15 + 0,006 · (R_k / R_x − 1)] на пределе измерений 20 МОм ±[0,5 + 0,02 · (R_k / R_x − 1)] на пределе измерений 27 ГОм ±[0,5 + 0,002 · (R_k / R_x − 1)] на пределе измерений 27 ГОм ±[0,5 + 0,002 · (R_k / R_x − 1)] на пределе измерений 27 ГОм на пределе измерений 100,5 + 0,002 · (R_k / R_x − 1)] на пределе измерений 100,5 + 0,002 · (R_k / R_x − 1) на пределе измерений 100,5 + 0,002 · (R_k / R_x − 1) на пределе измерений 100,5 + 0,002 · (R_k / R_x − 1) на пределе измерений 100,5 + 0,002 · (R_k / R_x − 1) на пределе измерений 100,5 + 0,002 · (R_k / R_x − 1) на пределе измерений 100,5 + 0,002 · (R_k / R_x − 1) на пределе измерений 100,5 + 0,002 · (R_k / R_x − 1) на пределе измерений 100,5 + 0,002 · (R_k / R_x − 1) на пределе измерений 100,5 + 0,002 · (R_k / R_x − 1) на пределе измерений 100,5 + 0,002 · (R_k / R_x − 1) <	Пределы допускаемой основной отно-			
Измерение среднеквадратического значения силы переменного тока: Диапазон измерений от 10 мA до 2 A Диапазон частот от 40 Гц до 5 кГц Предел измерений 2 A Пределы допускаемой основной относительной погрешности, % ±[0,8 + 0,1 · (I _κ /I _x − 1)] Измерение сопротивления постоянному току: — Диапазон измерений 200 Ом; 2; 20; 200; 2000 кОм; 20 МОм; 2 ГОм Пределы допускаемой основной относительной погрешности, %: = (2,15 + 0,02 · (R _κ / R _x − 1)] ±[0,15 + 0,006 · (R _κ / R _x − 1)] на пределах измерений 20 МОм ±[0,5 + 0,002 · (R _κ / R _x − 1)] ±[0,5 + 0,006 · (R _κ / R _x − 1)] на пределе измерений 2 ГОм ±[0,5 + 0,002 · (R _κ / R _x − 1)] ±[0,5 + 0,002 · (R _κ / R _x − 1)] измерение частоты синусоидальных и импульсных сигналов: Диапазон измерений 0 T 20 Γц до 1 МГц Предел измерений 0 T 20 Гц до 1 МГц 0 T 0,5 до 150 В напряжение входного сигнала: 0 T 0,5 до 30 В синусоидального, в диапазоне частот: 0 T 1 до 150 В от 100 кГц до 1 МГц 0 T 1 до 150 В от 100 кГц до 1 МГц 0 T 1 до 30 В импульсогь импульсов, не более 10 Пределы допускаемой основной	сительной погрешности, %	±[0,4 + 0,0	$2 \cdot (I_{\kappa}/I_{x}-1)$	
Диапазон измерений от 40 Γц до 5 кГц Предел измерений 2 A Пределы допускаемой основной относительной погрешности, % ±[0,8 + 0,1 · (I _κ /I _x − 1)] − Измерение сопротивления постоянному току: — ±[0,8 + 0,1 · (I _κ /I _x − 1)] − Диапазон измерений 0 T 1 Ом до 2 ГОм 200 Ом; 2; 20; 200; 2000 кОм; 20 МОм; 20 МОм; 2 ГОм Пределы измерений 200 Ом; 2; 20; 200; 2000 кОм; 20 МОм; 2 ГОм ±[0,15 + 0,02 · (R _κ / R _κ − 1)] ±[0,15 + 0,006 · (R _κ / R _κ − 1)] на пределах измерений 20 МОм ±[0,5 + 0,002 · (R _κ / R _κ − 1)] ±[0,5 + 0,006 · (R _κ / R _κ − 1)] ±[0,5 + 0,002 · (R _κ / R _κ − 1)] ±[0,5 + 0,002 · (R _κ / R _κ − 1)] ±[0,5 + 0,006 · (R _κ / R _κ − 1)] ±[0,5 + 0,002 · (R _κ / R _κ − 1)] ±[0,5 + 0,000 · (R _κ / R _κ − 1)] ±[0,5 + 0,000 · (R _κ / R _κ − 1)] ±[0,5 + 0,000 · (R _κ / R _κ − 1)] ±[0,5 + 0,000 · (R _κ / R _κ − 1)] ±[0,5 + 0,000 · (R _κ / R _κ − 1)] ±[0,5 + 0,000 · (R _κ / R _κ − 1)] ±[0,5 + 0,000 · (R _κ / R _κ − 1)] ±[0,5 + 0,000 · (R _κ / R _κ − 1)] ±[0,5 + 0,000 · (R _κ / R _κ − 1)] ±[0,5 + 0,000 · (R _κ / R _κ − 1)] ±[0,5 + 0,000 · (R _κ / R _κ − 1)] ±[0,5 + 0,000 · (R _κ / R _κ − 1)] ±[0,5 + 0,000 · (R _κ / R _κ − 1)] ±[0,5 + 0,000 · (R _κ / R _κ − 1)] ±[0,5 + 0,000 · (R _κ / R _κ − 1)] ±[0,5 + 0,000	A			
Диапазон частот Предел измерений Пределы допускаемой основной относительной погрешности, % Измерение сопротивления постоянному току: Диапазон измерений Пределы измерений Пределы измерений Пределы измерений Пределы измерений Оом; 2; 20; 200; 2000 кОм; 20 МОм; 2 ГОм Пределы допускаемой основной относительной погрешности, %: на пределах измерений 200 Ом; 2; 20; 200; 2000 кОм на предела измерений 200 Ом; 2; 20; 200; 2000 кОм ±[0,15 + 0,02 ⋅ (R _κ / R _κ − 1)] на пределе измерений 2 ГОм на пределе измерений 1 000 ⋅ (R _κ / R _κ − 1)] на пределе измерений 2 ГОм на пределений 2 ГОм на пределе				
Пределы допускаемой основной относительной погрешности, % ±[0,8 + 0,1 · (I _κ /I _x − 1)] − Измерение сопротивления постоянному току: Диапазон измерений				
Пределы допускаемой основной отно- сительной погрешности, % Измерение сопротивления постоянному току: Диапазон измерений Диапазон измерений 20 МОм Диапазон измерений 2 ГОм Диапазон измерений Диапаз				
сительной погрешности, % ±[0,8 + 0,1 · (I _K /I _x − 1)] — Измерение сопротивления постоянному току: Диапазон измерений от 1 Ом до 2 ГОм Пределы измерений 200 Ом; 2; 20; 200; 2000 кОм; 20 МОм; 2 ГОм Пределы допускаемой основной относительной погрешности, %: на пределах измерений ±[0,15 + 0,02 · (R _к / R _x − 1)] ±[0,15 + 0,006 · (R _к / R _x − 1)] на предела измерений 20 МОм ±[0,5 + 0,02 · (R _к / R _x − 1)] ±[0,5 + 0,006 · (R _к / R _x − 1)] ±[0,5 + 0,006 · (R _к / R _x − 1)] ±[0,5 + 0,0025 · (R _x ′ − 1)] ±[0,5 + 0,				
Измерение сопротивления постоянному току: Диапазон измерений от 1 Ом до 2 ГОм Пределы измерений 200 Ом; 2; 20; 200; 2000 кОм; 20 МОм; 2 ГОм Пределы допускаемой основной относительной погрешности, %: на пределах измерений ±[0,15 + 0,02 ⋅ (R _K / R _X − 1)] ±[0,15 + 0,006 ⋅ (R _K / R _X − 1)] на пределе измерений 20 МОм ±[0,5 + 0,002 ⋅ (R _K / R _X − 1)] ±[0,5 + 0,006 ⋅ (R _K / R _X − 1)] на пределе измерений 2 ГОм ±[0,5 + 0,002 ⋅ (R _K / R _X − 1)] ±[0,5 + 0,0025 ⋅ (R _X ′ − 1)] на пределе измерений 2 ГОм ±[0,5 + 0,0025 ⋅ (R _X ′ − 1)] ±[0,5 + 0,0025 ⋅ (R _X ′ − 1)] на пределе измерений 2 ГОм 10,5 + 0,0025 ⋅ (R _X ′ − 1)] ±[0,5 + 0,0025 ⋅ (R _X ′ − 1)] на предел измерений 2 ГОм 10,5 + 0,0025 ⋅ (R _X ′ − 1)] ±[0,5 + 0,0025 ⋅ (R _X ′ − 1)] на предел измерений 2 ГОм 10,5 + 0,0025 ⋅ (R _X ′ − 1)] на голи 2 Г г д о 1 МГ ц 10,000 000 Г ц Предел измерений 2 ГОм 10 Г д о 1 МГ ц 10 Г д о 1 МГ ц 10 Г д о 150 В 10 Г д о 30 В 10 Г д о		$\pm [0.8 + 0.1 \cdot (I_{\rm g}/I_{\rm x} - 1)]$	_	
Диапазон измерений от 1 Ом до 2 ГОм Пределы измерений 200 Ом; 2; 20; 200; 2000 кОм; 20 МОм; 2 ГОм Пределы допускаемой основной относительной погрешности, %: 	***************************************		1	
Пределы измерений 200 Ом; 2; 20; 200; 2000 кОм; 20 МОм; 2 ГОм Пределы допускаемой основной относительной погрешности, %: на пределах измерений 200 Ом; 2; 20; 200; 2000 кОм ±[0,15 + 0,02 · (R _κ / R _x − 1)] ±[0,15 + 0,006 · (R _κ / R _x − 1)] на пределе измерений 20 МОм ±[0,5 + 0,002 · (R _κ / R _x − 1)] ±[0,5 + 0,006 · (R _κ / R _x − 1)] измерение частоты синусоидальных и импульсных сигналов: Диапазон измерений 1000 000 Гц Предел измерений 1000 000 Гц Напряжение входного сигнала: синусоидального, в диапазоне частот: от 20 Гц до 100 кГц от 100 кГц до 1 МГц от 0,5 до 150 В от 100 кГц до 100 кГц от 1 до 150 В от 1 до 150 В от 1 до 30 В Длительность импульсов, не менее Скважность импульсов, не более Пределы допускаемой основной		·	до 2 ГОм	
Пределы допускаемой основной относительной погрешности, %: на пределах измерений 200 Ом; 2; 20; 200; 2000 кОм				
относительной погрешности, %: на пределах измерений 200 Ом; 2; 20; 200; 2000 кОм на пределе измерений 20 МОм на пределе измерений 20 МОм на пределе измерений 2 ГОм на пределе измерений 3 1 МГц Предел измерений 1 000 000 Гц Напряжение входного сигнала: синусоидального, в диапазоне частот: от 20 Гц до 100 кГц от 0,5 до 150 В от 100 кГц до 1 МГц от 0,5 до 30 В импульсного, в диапазоне частот: от 20 Гц до 100 кГц от 1 до 150 В от 100 кГц до 1 МГц от 1 до 30 В Длительность импульсов, не менее Скважность импульсов, не более Пределы допускаемой основной				
на пределах измерений 200 Ом; 2; 20; 200; 2000 кОм $\pm [0,15+0,02\cdot(R_{\kappa}/R_{\kappa}-1)] \pm [0,15+0,006\cdot(R_{\kappa}/R_{\kappa}-1)]$ на пределе измерений 20 МОм $\pm [0,5+0,02\cdot(R_{\kappa}/R_{\kappa}-1)] \pm [0,5+0,006\cdot(R_{\kappa}/R_{\kappa}-1)]$ на пределе измерений 2 ГОм $\pm [0,5+0,0025\cdot(R_{\kappa}'-1)] \pm [0,5+0,0025\cdot(R_{\kappa}'-1)]$ Измерение частоты синусоидальных и импульсных сигналов: Диапазон измерений 0 T 20 Гц до 1 МГц 1 000 000 Гц Напряжение входного сигнала: синусоидального, в диапазоне частот: от 20 Гц до 100 кГц 0 T 0,5 до 150 В от 100 кГц до 1 МГц 0 T 0,5 до 30 В импульсного, в диапазоне частот: от 20 Гц до 100 кГц 0 T 1 до 150 В от 100 кГц до 1 МГц 0 T 1 до 30 В Длительность импульсов, не менее 0,5 мкс Скважность импульсов, не более 10 Пределы допускаемой основной	•			
200 Ом; 2; 20; 200; 2000 кОм ±[0,15 + 0,02 · (R_к / R_x - 1)] ±[0,15 + 0,006 · (R_к / R_x - 1)] на пределе измерений 20 МОм ±[0,5 + 0,02 · (R_к / R_x - 1)] ±[0,5 + 0,006 · (R_к / R_x - 1)] на пределе измерений 2 ГОм ±[0,5 + 0,0025 · (R_x ' - 1)] ±[0,5 + 0,0025 · (R_x ' - 1)] Измерение частоты синусоидальных и импульсных сигналов: ————————————————————————————————————				
на пределе измерений 20 МОМ $\pm [0,5+0,02\cdot(R_{\kappa}/R_{\kappa}-1)]$ $\pm [0,5+0,006\cdot(R_{\kappa}/R_{\kappa}-1)]$ на пределе измерений 2 ГОМ $\pm [0,5+0,0025\cdot(R_{\kappa}'-1)]$ $\pm [0,5+0,0025\cdot(R_{\kappa}'-1)]$ Измерение частоты синусоидальных и импульсных сигналов: Диапазон измерений 0т 20 Гц до 1 МГц 1 000 000 Гц Напряжение входного сигнала: синусоидального, в диапазоне частот: от 20 Гц до 100 кГц от 100 кГц от 0,5 до 30 В импульсного, в диапазоне частот: от 20 Гц до 100 кГц от 1 до 150 В от 100 кГц до 1 МГц 0т 1 до 150 В от 100 кГц до 1 МГц 0т 1 до 30 В Длительность импульсов, не менее 0,5 мкс Скважность импульсов, не более Пределы допускаемой основной		$\pm [0.15 + 0.02 \cdot (R_{\kappa}/R_{\kappa}-1)]$	$\pm [0.15 + 0.006 \cdot (R_{\kappa}/R_{x} - 1)]$	
на пределе измерений 2 ГОм ±[0,5 + 0,0025 · (R _x ' − 1)] ±[0,5 + 0,0025 · (R _x ' − 1)] Измерение частоты синусоидальных и импульсных сигналов: Диапазон измерений 0т 20 Гц до 1 МГц Предел измерений 1 000 000 Гц Напряжение входного сигнала: синусоидального, в диапазоне частот: от 20 Гц до 100 кГц от 0,5 до 150 В от 100 кГц до 1 МГц от 0,5 до 30 В импульсного, в диапазоне частот: от 20 Гц до 100 кГц от 1 до 150 В от 100 кГц до 1 МГц от 1 до 30 В Длительность импульсов, не менее Скважность импульсов, не более Пределы допускаемой основной				
Измерение частоты синусоидальных и импульсных сигналов: Диапазон измерений от 20 Гц до 1 МГц Предел измерений 1 000 000 Гц Напряжение входного сигнала: синусоидального, в диапазоне частот: от 20 Гц до 100 кГц от 0,5 до 150 В от 100 кГц до 1 МГц от 0,5 до 30 В импульсного, в диапазоне частот: от 1 до 150 В от 20 Гц до 100 кГц от 1 до 30 В Олительность импульсов, не менее 0,5 мкс Скважность импульсов, не более 10 Пределы допускаемой основной				
Диапазон измерений от 20 Гц до 1 МГц Предел измерений 1 000 000 Гц Напряжение входного сигнала: синусоидального, в диапазоне частот: от 20 Гц до 100 кГц от 0,5 до 150 В от 100 кГц до 1 МГц от 0,5 до 30 В импульсного, в диапазоне частот: от 1 до 150 В от 20 Гц до 100 кГц от 1 до 30 В От 100 кГц до 1 МГц от 1 до 30 В Длительность импульсов, не менее 0,5 мкс Скважность импульсов, не более 10 Пределы допускаемой основной				
Предел измерений 1 000 000 Гц Напряжение входного сигнала: синусоидального, в диапазоне частот: от 20 Гц до 100 кГц				
Напряжение входного сигнала: синусоидального, в диапазоне частот: от 20 Гц до 100 кГц от 0,5 до 150 В от 100 кГц до 1 МГц от 0,5 до 30 В импульсного, в диапазоне частот: от 20 Гц до 100 кГц от 1 до 150 В от 100 кГц до 1 МГц от 1 до 30 В Длительность импульсов, не менее Скважность импульсов, не более Пределы допускаемой основной		1 000	000 Гц	
синусоидального, в диапазоне частот: от 20 Гц до 100 кГц от 0,5 до 150 В от 100 кГц до 1 МГц от 0,5 до 30 В импульсного, в диапазоне частот: от 20 Гц до 100 кГц от 1 до 150 В от 100 кГц до 1 МГц от 1 до 30 В Длительность импульсов, не менее Скважность импульсов, не более Пределы допускаемой основной				
от 20 Гц до 100 кГц от 0,5 до 150 В от 100 кГц до 1 МГц от 0,5 до 30 В импульсного, в диапазоне частот: от 20 Гц до 100 кГц от 1 до 150 В от 1 до 150 В от 1 до 30 В Длительность импульсов, не менее 0,5 мкс Скважность импульсов, не более 10				
от 100 кГц до 1 МГц импульсного, в диапазоне частот: от 20 Гц до 100 кГц от 1 до 150 В от 100 кГц до 1 МГц от 1 до 30 В Длительность импульсов, не менее Скважность импульсов, не более Пределы допускаемой основной		от 0.5 до 150 В		
импульсного, в диапазоне частот: от 20 Гц до 100 кГц от 1 до 150 В от 100 кГц до 1 МГц от 1 до 30 В Длительность импульсов, не менее Скважность импульсов, не более Пределы допускаемой основной	AND THE STREET, AND THE STREET			
от 20 Гц до 100 кГц от 1 до 150 В от 100 кГц до 1 МГц от 1 до 30 В Длительность импульсов, не менее 0,5 мкс Скважность импульсов, не более 10 Пределы допускаемой основной				
от 100 кГц до 1 МГц от 1 до 30 В Длительность импульсов, не менее 0,5 мкс Скважность импульсов, не более 10 Пределы допускаемой основной		от 1 д	(o 150 B	
Длительность импульсов, не менее 0,5 мкс Скважность импульсов, не более 10 Пределы допускаемой основной				
Скважность импульсов, не более 10 Пределы допускаемой основной				
Пределы допускаемой основной				
0/				
			1002.E /E 1	

	Значение	
Наименование	формат индикации 4 ½	формат индикации 5 ½
Измерение периода синусоидальных и им	пульсных сигналов:	
Диапазон измерений	от 5·10 ⁻² до 1·10 ⁻⁴ с	
Предел измерений	100 000 мкс	
Напряжение входного сигнала	от 1 до 30 В	
Длительность импульсов, не менее	10 мкс	
Скважность импульсов, не более	10	
Пределы допускаемой основной относительной погрешности, %	±[0.1 + 0.	002·T _κ / T _x]
В настоящей таблице используются условные		ου <u>Σ Ικ</u> τ Ιχ <u>Ι</u>

 U_{κ} – конечное значение установленного предела измерений напряжения, B;

U_x − значение измеряемой величины напряжения, В;

U_{лнв} – значение измеряемой величины напряжения на входе ДНВ, кВ;

U_в – значение измеряемой величины напряжения на входе вольтметра, В;

U_п – предельное значение измеряемой величины напряжения с высокочастотным пробником, В;

F – частота измеряемого напряжения, Гц;

I_к - конечное значение установленного предела измерений силы тока, А;

I_x – значение измеряемой величины силы тока, А;

 R_{κ} – конечное значение установленного предела измерений сопротивления, Ом;

R_x - значение измеряемой величины сопротивления, Ом;

R_x' - значение измеряемой величины сопротивления, МОм;

F_к – конечное значение установленного предела измерений частоты, Гц;

F_x − значение измеряемой величины частоты, Гц;

Т_к - конечное значение установленного предела измерений периода, мкс;

Т_х – значение измеряемой величины периода, мкс.

Основные технические характеристики и метрологические характеристики, не относящиеся к обязательным метрологическим требованиям: представлены в таблице 2.

Таблина 2

Наименование	Значение
Измерение среднего квадратического значения силы перемен-	
ного тока с шунтом «10 А»:	
Диапазон измерений, А	от 2 до 10
Диапазон частот	от 40 Гц до 2 кГц
Предел измерений, А	10
Пределы допускаемой основной относительной погрешности, %	$\pm[1+0,1\cdot(I_{K}/I_{X}-1)]$
Номинальные условия:	
диапазон температуры окружающего воздуха, °С	от 15 до 25
диапазон относительной влажности окружающего воздуха, %	от 30 до 80
диапазон атмосферного давления, кПа	от 84 до 104
Условия эксплуатации:	
диапазон температуры окружающего воздуха, °С	от 5 до 40
относительная влажность окружающего воздуха при температуре 25 °C, %, не более	80
диапазон атмосферного давления, кПа	от 84,0 до 106,7
Пределы допускаемой дополнительной погрешности при	соответствуют
изменении температуры окружающего воздуха в диапазоне	удвоенному значению
условий эксплуатации относительно нормальных условий на	пределов допускаемой
каждые 10 °C *	основной погрешности

Наименование	Значение	
Условия транспортирования:		
диапазон температуры окружающего воздуха, °С	от минус 50 до плюс 50	
относительная влажность окружающего воздуха при температуре 35 °C, %, не более	80	
диапазон атмосферного давления, кПа	от 60 до 100	
Параметры питания от сети переменного тока:		
напряжение, В	от 207 до 253	
частота, Гц	от 49 до 51	
Потребляемая мощность, В А, не более	20	
Наработка на отказ, ч, не менее	15000	
Время восстановления рабочего состояния, ч, не более	3	
Габаритные размеры, мм, не более	310 × 268 × 100	
Масса, кг, не более	3,2	
* Кроме измерения сопротивления постоянному току на пределе 2 ГОм. проводят только в нормальных условиях.	Измерения на этом пределе	

Комплектность: представлена в таблице 3.

Таблица 3

Наименование Обозначение		Количество на исполнение, шт.		Примечание
		B7-53	B7-53/1	•
Вольтметр универсальный В7-53	УШЯИ.411182.003	1		
Вольтметр универсальный B7-53/1	УШЯИ.411182.003-01	_	1	
Принадлежности:				
пробник высокочастотный	РУВИ.435141.001-11	1	1	Поставка по отдельному договору
шунт «10 А»	РУВИ.469135.011-10	1	1	То же
делитель напряжения высоко- вольтный (ДНВ)	РУВИ.469135.012-10	1	1	То же
шунт «К2»	Tr5.639.017			То же. Входит
шунт «К3»	Tr5.639.017-01			в комплект
шунт «10 МΩ»	Tr5.639.017-02			ДНВ
кабель К-1	УШЯИ.685611.079	2	2	
кабель К-4	УШЯИ.685611.073	1	1	
кабель измерительный	УШЯИ.685612.029	1	1	
кабель КОП	E9 4.854.130	1	_	
шнур сетевой	РУВИ.685612.017	1	1	
щуп	Tr6.360.003	2	2	
вилка	УШЯИ.685173.001	1	1	
перемычка	Tr7.755.147	2	2	
. гайка М4-4Н.5.019	ГОСТ 5927-70	4	4	
Запасные части:				
вставка плавкая ВП1-1 0,5 А	АГ0.481.303 ТУ	4	3	
вставка плавкая ВП1-1 2,0 А	АГ0.481.303 ТУ	2	2	
вставка плавкая ВП2Б-1В 0,5 A 250 В	АГ0.481.304 ТУ	4	4	

Наименование	Обозначение	Количество на исполнение, шт.		Примечание
		B7-53	B7-53/1	
Эксплуатационная документация:				
техническое описание и ин- струкция по эксплуатации. Часть 1	УШЯИ.411182.003 ТО	1	1	
техническое описание и ин- струкция по эксплуатации. Часть 2	УШЯИ.411182.003 ТО1	1	1	Входит мето- дика поверки
формуляр	УШЯИ.411182.003 ФО	1		
формуляр	УШЯИ.411182.003-01 ФО	_	1	
Упаковка:				
упаковка	УШЯИ.305642.029	1		
упаковка	УШЯИ.305642.029-01	_	1	
ящик	EE4.171.47222	1	1	При поставке со всеми принадлежностями

Место нанесения знака утверждения типа средств измерений: знак утверждения типа средств измерений наносится на переднюю панель вольтметров и на титульный лист формуляра.

Поверка осуществляется по МРБ МП.3309-2022 «Система обеспечения единства измерений Республики Беларусь. Вольтметры универсальные В7-53. Методика поверки. УПІЯИ.411182.003 МП».

Сведения о методиках (методах) измерений: отсутствуют.

Технические нормативные правовые акты и технические документы, устанавливающие:

требования к типу средств измерений:

УШЯИ.411182.003 ТУ «Вольтметры универсальные В7-53, В7-53/1. Технические условия»;

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия»;

технический регламент Таможенного союза «Электромагнитная совместимость технических средств» (ТР ТС 020/2011);

технический регламент Таможенного союза «О безопасности низковольтного оборудования» (ТР ТС 004/2011);

методику поверки:

МРБ МП.3309-2022 «Система обеспечения единства измерений Республики Беларусь. Вольтметры универсальные В7-53. Методика поверки. УШЯИ.411182.003 МП».

Перечень средств поверки: представлен в таблице 4.

Таблица 4

Наименование и тип средств поверки
Термогигрометр UniTess THB1
Универсальная пробойная установка УПУ-1М
Калибратор вольтметров универсальный В1-28
Аппарат АИИ-70
Прибор для поверки вольтметров переменного тока В1-9
Источник постоянного напряжения Б5-24А
Делитель напряжения высоковольтный ДНВ-10А
Вольтметр цифровой Щ1513
Источник высокого напряжения ИВН-100
Делитель напряжения высоковольтный напряжения постоянного тока ДНВ-100
Генератор сигналов высокочастотный Г4-154
Прибор для поверки вольтметров переменного тока В1-15
Вольтметр переменного тока диодный компенсационный В3-49
Магазин электрического сопротивления Р4830/2
Катушка электрического сопротивления Р331
Мера электрического сопротивления Р4013
Мера электрического сопротивления Р4017
Магазин электрического сопротивления Р4043
Источник постоянного тока Б5-21
Вольтметр универсальный В7-46
Конденсаторы K73-16-100 B-1 мкФ ±10 % ОЖО.461.108 ТУ
Резистор C5-16T 10 Bt 0,68 Ом ±5 % ОЖО.467.513 ТУ
Катушка электрического сопротивления Р310
Генератор сигналов низкочастотный Г3-110
Генератор импульсов точной амплитуды Г5-75
Примечание – Допускается применять другие средства поверки, обеспечивающие определение
метрологических характеристик с требуемой точностью.

Идентификация программного обеспечения: представлена в таблице 5.

Таблица 5

Обозначение вольтметра	Идентификационное наименование ПО	Номер версии ПО (идентификационный номер)
B7-53	РУВИ.431214.006	1.0
B7-53/1	РУВИ.431214.006-01	1.0

Заключение о соответствии утвержденного типа средств измерений требованиям технических нормативных правовых актов и/или технической документации производителя: вольтметры универсальные B7-53 соответствуют требованиям УШЯИ.411182.003 ТУ, ГОСТ 22261-94, ТР ТС 020/2011, ТР ТС 004/2011.

Производитель средств измерений

Унитарное предприятие «Завод СВТ»

пр-т. Независимости, 58, корп. 11, 220005, г. Минск, Республика Беларусь,

Телефон: +375 17 293-94-68,

Факс: +375 17 284-46-47

e-mail: info@zsvt.ru

испытания юридическое проводившее Уполномоченное лицо, измерений/метрологическую экспертизу единичного экземпляра средств измерений Республиканское унитарное предприятие «Белорусский государственный институт метрологии» (БелГИМ)

Республика Беларусь, 220053, г. Минск, Старовиленский тракт, 93

Телефон: +375 17 374-55-01 факс: +375 17 244-99-38 e-mail: info@belgim.by

- Приложения: 1. Фотографии общего вида средств измерений на 1 листе.
 - 2. Схема (рисунок) с указанием места для нанесения знака поверки средств измерений на 1 листе.

3. Схема пломбировки от несанкционированного доступа на 1 листе.

Директор БелГИМ

В.Л. Гуревич

Приложение 1 (обязательное) Фотографии общего вида средств измерений

Рисунок 1.1 – Фотография общего вида вольтметра универсального В7-53

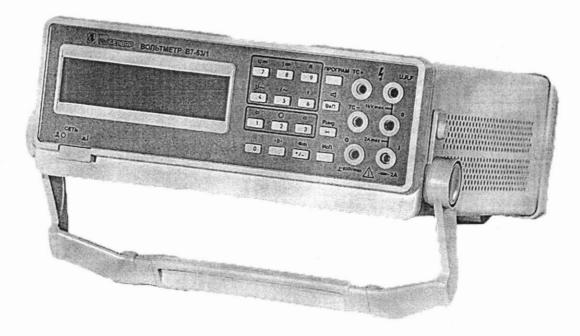


Рисунок 1.2 – Фотография общего вида вольтметра универсального В7-53/1

Приложение 2 (обязательное)

Схема (рисунок) с указанием мест для нанесения знаков поверки средств измерений

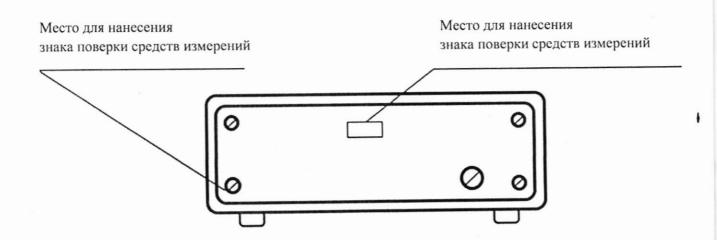


Рисунок 2.1 – Схема (рисунок) с указанием мест (два) для нанесения знаков поверки средств измерений

Приложение 3 (обязательное)

Схема пломбировки от несанкционированного доступа

Рисунок 3.1 – Схема пломбировки от несанкционированного доступа