ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Стенд измерительный для измерения РТХ антенн и отражательных характеристик объектов в диапазоне частот $1-40~\Gamma\Gamma$ ц на базе радиоколлиматора МАК-15 ТМСА $1.0\text{-}40.0~\mathrm{K}~073$

Назначение средства измерений

Стенд измерительный для измерения РТХ антенн и отражательных характеристик объектов в диапазоне частот $1-40~\Gamma\Gamma$ ц на базе радиоколлиматора МАК-15 ТМСА 1.0-40.0 К 073 (далее – стенд) предназначен для формирования, усиления, передачи в СВЧ-тракт и приема измерительных сигналов в диапазоне частот от 1 до 40 $\Gamma\Gamma$ ц.

Описание средства измерений

Принцип действия стенда основан на формировании генераторами сверхкоротких импульсов, их передачи в СВЧ-тракт при помощи фазостабильных кабелей СВЧ, усиления при помощи усилителей и приема при помощи приемного модуля и приемника TMR 8240.

Управление работой стенда, регистрация результатов измерений и их первичная обработка осуществляется при помощи ПЭВМ с установленным специализированным программным обеспечением.

Стенд измерительный для измерения РТХ антенн и отражательных характеристик объектов в диапазоне частот 1-40 ГГц на базе радиоколлиматора MAK-15 ТМСА 1.0-40.0 К 073 состоит из следующих элементов:

- приемника сверхширокополосного программно-управляемого ТМR 8240 диапазона частот 0-40 ГГц;
- генераторов сверхкоротких импульсов TMG200021R01, TMG030018VN01 и TMГ055008P01;
 - усилителей мощности СВЧ диапазонов частот 1-2, 2-8, 8-18 и 18-40 ГГц;
 - приемного модуля TRIM;
 - усилителей сверхширокополосных малошумящих (МШУ) ТМУ 0140-30 (2шт);
 - СВЧ аттенюаторов и переходов, калибровочного набора 2,9мм;
 - фазостабильных кабелей СВЧ;
 - ПЭВМ, используемой для управления стендом и вычисления результатов измерений;
 - источника бесперебойного питания.

Стенд предназначен для работы в составе компактных полигонов коллиматорного типа, а также других комплексов для измерений радиотехнических характеристик антенн.

Общий вид составных частей стенда приведен на рисунках 1-9.

Схема пломбировки от несанкционированного доступа, обозначение места нанесения знака утверждения типа представлены на рисунке 2.

Рисунок 1 – Общий вид приемника сверхширокополосного TMR 8240

Рисунок 2 – Общий вид стойки с аппаратурой стенда

Рисунок 3 – Общий вид генератора сверхкоротких импульсов TMG030018VN01

Рисунок 4 – Общий вид усилителя мощности диапазона частот 1-2 ГГц

Рисунок 5 – Общий вид усилителя мощности диапазона частот 2-8 ГГц

Рисунок 6 – Общий вид усилителя мощности диапазона частот 8-18 ГГц

Рисунок 7 – Общий вид усилителя мощности диапазона частот 18-40 ГГц

Рисунок 8 – Общий вид СВЧ малошумящего усилителя ТМУ 0140-30

Рисунок 9 - Общий вид приемного модуля TRIM

Программное обеспечение

Программное обеспечение (далее – ПО) стенда осуществляет:

- управление элементами стенда и процессом измерений;
- обработку результатов измерений и получение значений радиотехнических характеристик испытываемых антенн и отражательных характеристик объектов;
- представление радиотехнических характеристик испытываемых антенн и отражательных характеристик объектов в виде соответствующих графиков и диаграмм;
- хранение результатов измерений и значений радиотехнических характеристик испытываемых антенн и отражательных характеристик объектов.

Метрологически значимая часть ПО стенда представляет собой специализированное программное обеспечение «NFMeas», «NFCalc», «PatCalc» «AmrView».

Специализированное ПО «NFMeas» предназначено для настройки стенда и проведения измерений временных сигналов в дальней зоне антенны, для управления стробоскопическим приемником и контроллером перемещения позиционера, а также для сохранения всех данных измерения в файлах.

Специализированное ПО «NFCalc» предназначено для расчета нормируемых характеристик направленности и энергетических характеристик антенн на основе результатов измерений в дальней зоне.

Специализированное ПО «PatCalc» предназначено для расчета РЛХ объектов во временной области.

Специализированное ПО «AmrView» предназначено для визуализации результатов расчетов, выполненных с помощью специализированного программного обеспечения «NFCalc» и «PatCalc».

Уровень защиты ПО «средний» в соответствии с Р 50.2.077-2014.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационны е данные (признаки)	Значение			
Идентификационное наименование ПО	NFMeas.exe	NFCalc.exe	AmrView.exe	«PatCalc.exe»
Номер версии (идентификационны й номер) ПО	4.20	3.20.1	3.16.60612	1.02
Цифровой идентификатор ПО (контрольная сумма исполняемого кода) по алгоритму MD5	6B197E805633 83ADDD1571 B3DC6524EF	90F2307A43D 112207504337 B9CCA9F24	FAF113F3C83 206EB863D69 624F5D3FC0	9CB0EF4EB1 8F8F53637139 2024702DAB

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

1 1	
Наименование характеристики	Значение
Диапазон рабочих частот, ГГц	от 1 до 40
Пределы допускаемой	
относительной погрешности частоты, %	$\pm 0,05$
Динамический диапазон при	иемного устройства
Количество усреднений сигнала	Динамический диапазон приемного
	устройства, дБ, не менее
для входа НЧ:	
16 усреднений	53,0
64 усреднения	59,0
128 усреднений	62,0
256 усреднений	65,0
512 усреднений	68,0
для входа ВЧ:	
16 усреднений	40,0
64 усреднения	46,0
128 усреднений	49,0
256 усреднений	52,0
512 усреднений	55,0

Продолжение таблицы 2

Наименование характеристики	Значение
Энергетический потенци	
Диапазон частот, ГГц	Энергетический потенциал
A.m	комплекса, дБ, не менее
при 128 усреднениях:	711.7
от 1 до 2 ГГц включ.	137,0
св. 2 до 8 ГГц включ.	128,0
св. 8 до 18 ГГц включ.	118,0
св. 18 до 40 ГГц включ.	90,0
est to go to the state if	70,0
при 256 усреднениях:	
от 1 до 2 ГГц включ.	140,0
св. 2 до 8 ГГц включ.	131,0
св. 8 до 18 ГГц включ.	121,0
св. 18 до 40 ГГц включ.	93,0
est to go to the state if	75,0
при 512 усреднениях:	
от 1 до 2 ГГц включ.	143,0
св. 2 до 8 ГГц включ.	134,0
св. 8 до 18 ГГц включ.	124,0
св. 18 до 40 ГГц включ.	96,0
Пределы допускаемой погрешности изм	*
спектральных составляющих сигнале	
Диапазон частот и уровень сигнала	Погрешность измерений, дБ
от 1 до 2 ГГц включ.:	потрешность померении, дь
на уровне минус 5 дБ	$\pm 0,1$
на уровне минус 10 дБ	±0,3
на уровне минус 15 дБ	±0,6
на уровне минус 20 дБ	± 0.7
на уровне минус 25 дБ	± 0.8
на уровне минус 30 дБ	± 0.8
на уровне минус 35 дБ	±1,0
на уровне минус 40 дБ	±1,0
на уровне минус 45 дБ	±1,2
на уровне минус 50 дБ	±1,2
in yposite initiye eo ga	=-,-
св. 2 до 8 ГГц включ.:	
на уровне минус 5 дБ	±0,3
на уровне минус 10 дБ	±0,4
на уровне минус 15 дБ	±0,6
на уровне минус 20 дБ	± 0.7
на уровне минус 25 дБ	±0,8
на уровне минус 30 дБ	± 0.8
на уровне минус 35 дБ	±0,9
на уровне минус 40 дБ	±1,0
на уровне минус 45 дБ	±1,1
на уровне минус 50 дБ	±1,5
Jr - J - J - G -	—- ,-
св. 8 до 18 ГГц включ.:	
на уровне минус 5 дБ	$\pm 0,6$
на уровне минус 10 дБ	±0,9
J - r1	- 1-

Продолжение таблицы 2.

продолжение гаолицы 2.	
Наименование характеристики	Значение
на уровне минус 15 дБ	$\pm 1,0$
на уровне минус 20 дБ	$\pm 1,0$
на уровне минус 25 дБ	±1,2
на уровне минус 30 дБ	±1,2
на уровне минус 35 дБ	±1,2
на уровне минус 40 дБ	±1,5
на уровне минус 45 дБ	±1,7
на уровне минус 50 дБ	±2,0
св. 18 до 40 ГГц включ.:	
на уровне минус 5 дБ	±1,5
на уровне минус 10 дБ	±2,0
на уровне минус 15 дБ	±2,2
на уровне минус 20 дБ	±2,2
на уровне минус 25 дБ	±2,4
на уровне минус 30 дБ	±2,5
на уровне минус 35 дБ	±2,7
на уровне минус 40 дБ	±2,8
на уровне минус 45 дБ	±3,0
на уровне минус 50 дБ	±3,3

Примечание: метрологические характеристики получены без использования усилителей сверхширокополосных малошумящих ТМУ 0140-30

Таблица 3 – Основные технические характеристики

Tuomique onobibio formin fookiro napaktopiiotii	
Наименование характеристики	Значение
Потребляемая мощность, В-А, не более	3000
Масса, кг, не более:	90
Габаритные размеры средства измерений,	
мм, не более:	
- высота	2000
- ширина	600
- длина	600
Условия эксплуатации:	
- температура окружающей среды, °С	от 0 до +40
- относительная влажность, %	не более 80
- атмосферное давление, мм рт. ст.	от 720 до 780

Знак утверждения типа

наносится на усилитель мощности СВЧ диапазона 18-40 ГГц в виде наклейки и на титульный лист руководства по эксплуатации методом компьютерной графики.

Комплектность средства измерений

Таблица 4 – Комплектность стенда

Наименование	Обозначение	Кол-во
1 Стенд измерительный для измерения РТХ антенн и отражательных характеристик объектов в диапазоне частот 1 – 40 ГГц на базе радиоколлиматора МАК-15 ТМСА 1.0-40.0 К 073 в составе:	TMCA 1.0-40.0 K 073	1 шт.

Продолжение таблицы 4.

Наименование	Обозначение	Кол-во
1.1 Приемник сверхширокополосный программно- управляемый диапазона частот 0-40 ГГц	TMR 8240	1 шт.
1.2 Генератор сверхкоротких импульсов	TMG200021R01	1 шт.
1.3 Генератор сверхкоротких импульсов	TMG030018VN01	1 шт.
1.4 Генератор сверхкоротких импульсов	ТМГ055008Р01	1 шт.
1.5 Усилитель мощности СВЧ диапазона 1-2 ГГц	1	1 шт.
1.6 Усилитель мощности СВЧ диапазона 2-8 ГГц	1	1 шт.
1.7 Усилитель мощности СВЧ диапазона 8-18 ГГц	-	1 шт.
1.8 Усилитель мощности СВЧ диапазона 18-40 ГГц	-	1 шт.
1.9 Приемный модуль TRIM	-	1 шт.
1.10 Усилитель сверхширокополосный	ТМУ 0140-30	2 шт.
малошумящий	11013 0140-30	2 ш1.
1.11 Фазостабильные кабели СВЧ	· -	1 ком.
1.12 СВЧ аттенюаторы и переходы,	_	1 ком.
калибровочный набор 2,9		
1.13 Аппаратурная стойка	-	1 шт.
1.14 ПЭВМ	-	1 шт.
1.15 Источник бесперебойного питания	-	1 шт.
2 Программное обеспечение	-	1 диск
3 Руководство по эксплуатации	ТМСА 073.040.00К РЭ	1 экз.
4 Паспорт	ТМСА 073.040.00К ПС	1 экз.
5 Методика поверки	133-18-11 МП	1 экз.

Поверка

осуществляется по документу 133-18-11 МП «Инструкция. Стенд измерительный для измерения РТХ антенн и отражательных характеристик объектов в диапазоне частот $1-40~\Gamma\Gamma$ ц на базе радиоколлиматора МАК-15 ТМСА 1.0-40.0 К 073. Методика поверки», утвержденному ФГУП «ВНИИФТРИ» 28.09.2018 г.

Основные средства поверки:

- генератор сигналов Agilent N5183A, регистрационный № 40965-09, диапазон частот от 0,1 МГц до 40 ГГц, погрешность установки частоты $\pm 2,1\times10^{-6}$;
- аттенюатор ступенчатый программируемый 84908М, регистрационный № 60239-15, диапазон частот от 0 до 50 ГГц, диапазон вводимых ослаблений от 0 до 65 дБ с шагом 5 дБ.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки или оттиска поверительного клейма.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к стенду измерительному для измерения РТХ антенн и отражательных характеристик объектов в диапазоне частот $1-40~\Gamma\Gamma$ ц на базе радиоколлиматора МАК-15 ТМСА $1.0\text{-}40.0~\mathrm{K}~073$

Техническая документация предприятия-изготовителя

Изготовитель

Общество с ограниченной ответственностью «Научно-производственное предприятие «ТРИМ СШП Измерительные системы» (ООО «НПП «ТРИМ СШП Измерительные системы»)

ИНН 7804323773

Адрес: 195197, г. Санкт-Петербург, Кондратьевский проспект, д.40, корп.14, литера A, офис 10H

Телефон: (812) 327-44-56, факс: (812) 540-03-15

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт физико-технических и радиотехнических измерений»

(ФГУП «ВНИИФТРИ»)

Юридический адрес: 141570, Московская обл., Солнечногорский р-н, рабочий поселок Менделеево, промзона ВНИИФТРИ

Почтовый адрес: 141570, Московская обл., Солнечногорский р-н, п/о Менделеево

Телефон: (495) 526-63-00, факс: (495) 526-63-00

E-mail: office@vniiftri.ru

Аттестат аккредитации Φ ГУП «ВНИИ Φ ТРИ» по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 11.05.2018 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

A.E	3. Кулеш	ΟI
1 1.1		·

М.п. «___ » _____ 2019 г.