ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Теплосчетчики АТ-А

Назначение средства измерений

Теплосчетчики AT-A (далее - AT-A) предназначены для измерений и учета тепловой энергии, объемного и массового расхода, объема, массы среды (вода: теплосетевая, горячая, холодная, сточная) и параметров среды, полностью заполняющей поперечные сечения измерительных трубопроводов (далее – ИТ) и движущейся в обоих направлениях: прямом и обратном (реверсном) в водяных системах теплоснабжения (далее – BCT), на источниках и у потребителей тепловой энергии (далее соответственно – источники и потребители), а также в системах горячего водоснабжения (далее – ГВС), системах холодного водоснабжения (далее – XBC) и системах охлаждения, вентиляции и водоотведения.

Описание средства измерений

Принцип работы AT-A состоит в измерении значений объемного расхода и параметров среды: давления и температуры в ИТ в привязке к текущему времени с последующим расчетом значений объема и массы среды, тепловой мощности (тепловой нагрузки) и тепловой энергии, по уравнениям измерений, приведенным в МИ 2714-2002.

Принцип действия штатных для АТ-А полнопроходных первичных преобразователей расхода электромагнитных (далее – ППР) состоит в том, что при прохождении измеряемой среды (электропроводящей жидкости) через магнитное поле в ней, как в движущемся проводнике, наводится электродвижущая сила (далее – ЭДС), которая в измерительном сечении ИТ пропорциональна средней скорости среды, т.е. объемному расходу. Причем ЭДС инвариантна (в рабочем диапазоне) к плотности, вязкости, электрической проводимости измеряемой среды, а также режиму ее течения: ламинарному или турбулентному.

В каждом экземпляре AT-A реализуется один из четырех вариантов электропитания: автономный, от сети переменного тока, смешанный, где одна часть компонентов AT-A имеет сетевое, другая — автономное электропитание и комбинированное, где сетевое электропитание при нарушениях дополняется автономным.

Каждый экземпляр АТ-А, в зависимости от модификации, состоит из одного или двух автономных блоков АТ-М (далее – АТ-М). Каждый из АТ-М состоит из ППР, устанавливаемого на ИТ с измеряемой средой. Сигнал первичной измерительной информации от ППР по линиям связи передается в измерительно-вычислительный преобразователь ИВП (далее – ИВП). Кроме того, в состав каждого экземпляра АТ-А, в зависимости от модификации и реализованного вида электропитания включаются средства измерений (далее – СИ) утвержденных типов (таблица 1), подключаемые к ИВП: датчики температуры — термопреобразователи сопротивления из платины (100П и Рt100) по ГОСТ 6651 (далее – ТП) и их комплекты (далее – КТП), преобразователи (датчики) давления (далее— ПД).

ИВП конструктивно выполнены в пылевлагозащищенном корпусе, размещённом непосредственно на ППР.

ИВП, применяемые в АТ-А, разделяются на: управляющие — ИВП-У и исполнительные — ИВП-И. Соответственно, АТ-М, где применяются ИВП-У, являются управляющими — АТ-М-У и монтируются на подающие ИТ, а АТ-М, где применяются ИВП-И, являются исполнительным — АТ-М-И и монтируются на обратные ИТ.

В ИВП-У сигналы первичной измерительной информации, поступающие от ППР, КТП, ТП, ПД, измеряются, фильтруются от помех и преобразуются в помехоустойчивый вид. В ИВП-У происходит выполнение всех измерительных преобразований, входящих в сферу государственного регулирования обеспечения единства измерений, а также управление всеми процессами обработки результатов измерений, формирование архивов информации и событий и обеспечение хранения этих архивов в энергонезависимой памяти.

ИВП-И, взаимодействуя с ИВП-У, выполняют вспомогательные операции обработки результатов измерений: хранение в энергонезависимой памяти отдельных архивов.

Таблина 1

гаолица т									
СИ, применяемые в составе АТ-А, при виде электропитания:									
Комбинированное, сетевое и смешанное									
ан	автономное ПД								
КТП	ТΠ								
КТС-Б класс АА, А	ТСП (рег. № 65539-16)	ИД (рег. № 26818-15)							
(per. № 43096-15)	, 1								
КТСП-Н класс А									
(рег. № 38878-17)	a ,								
ТСП-К (рег. № 65539-16)									
Примечание — В скобках указаны регистрационные номера СИ в Федеральном информа-									
ционном фонде по обеспечению единства измерений									

АТ-А имеют пять модификаций:

- AT-A-1 предназначены для закрытых ВСТ на источниках и у потребителей. Состоят только из АТ-М-У, к которым подключаются КТП, при этом ТП, входящие в состав КТП, устанавливаются на подающие и обратные ИТ.
- AT-A-2 предназначены для закрытых ВСТ с контролем утечек теплоносителя на источниках и у потребителей. Состоят из АТ-М-У, а также АТ-М-И, используемых для измерений массы утечек теплоносителя. К АТ-М-У подключаются КТП, при этом ТП, входящие в состав КТП, устанавливаются на подающие и обратные ИТ.
- AT-A-3 предназначены для измерений тепловой энергии объема, массы и параметров среды в тупиковых (однотрубных) ВСТ на источниках и у потребителей или в тупиковых системах: ГВС, ХВС, водоотведения. АТ-М-У, к которым подключаются ТП, устанавливаемые на единственный ИТ.
- AT-A-4 предназначены для открытых ВСТ у потребителей. Состоят из AT-M-У и AT-M-И. К AT-M-У подключается КТП, при этом ТП, входящие в состав КТП, устанавливаются на подающий и обратный ИТ.
- AT-A-5 являются преобразователями объема среды для применения в составе теплосчетчиков и счетчиков количества среды в ВСТ, системах: ГВС, ХВС, водоотведения на источниках и у потребителей. Состоят из АТ-М-У5, куда вместе с ППР входят измерительновычислительные преобразователи ИВП-У5 (далее ИВП-У5), полученные из ИВП-У добавлением интеграторов объемного расхода, формирующих и выдающих электрические импульсы при накоплении заданных значений объема, устанавливаемых по заказу при выпуске из производства (штатные значения объема, соответствующие одному импульсу и зависящие от номинального диаметра ППР, указаны в таблице 4).

При реализации сетевого или смешанного электропитания, по заказу в состав каждого экземпляра AT-A, включаются до двух ПД, устанавливаемых на задействованных ИТ. Для модификации AT-A-5 комплектование ПД, а также ТП и КТП не предусмотрено.

Модификации AT-A применяемые для BCT, используются и в системах охлаждения, аналогичной конфигурации, для измерений тепловой энергии, отобранной у объектов.

АТ-А представляют собой измерительные системы вида ИС-1 по ГОСТ Р 8.596-2002, в каждой из которых, в зависимости от комплектации, функционально выделяются измерительные каналы (далее – каналы). Каналы: объемного расхода, объема, температуры, давления, плотности, удельной энтальпии, массового расхода и массы выделяются в привязке к ИТ, на которых установлены датчики соответствующих величин. Для двух ИТ (в том числе подающего и обратного) выделяются каналы разности температур и разности масс теплоносителя (массы теплоносителя, отобранного из открытых ВСТ на ГВС и т.п., а для закрытых ВСТ определяется масса утечек). Для ВСТ и систем охлаждения в целом выделяются каналы тепловой мощности

(для потребителей – тепловой нагрузки) и тепловой энергии. В каждом экземпляре всех модификаций АТ-А имеется один канал текущего времени.

При выполнении поверки каждый канал AT-A при необходимости разделяется на элементы, у которых с помощью эталонов входные величины (параметры) имитируются, а выходные — измеряются. Кроме того, в модификации AT-A-5 только на время выполнения поверки канала объема специально выделяется канал объемного расхода.

В состав АТ-А в качестве вспомогательных компонентов по ГОСТ Р 8.596-2002 включаются: штатные блоки для сетевого электропитания и при реализации сетевого, комбинированного и смешанного электропитания. Включаются также периферийные устройства из числа следующих:

- а) автоматические преобразователи интерфейса АПИ RS-485/USB, обеспечивают преобразование выходных сигналов AT-A в кодах интерфейса RS-485 в коды интерфейса USB внешних устройств;
- б) устройства переноса данных УПД-SD, обеспечивают копирование данных из памяти с одного или нескольких AT-A и перенос этих данных в пункты обработки;
- в) коммуникаторы ИВП/ПК, обеспечивают передачу информации из ИВП в персональный компьютер;
 - г) панели доступа и управления АТ-ДУ, которые обеспечивают:
- работу в режиме удаленного пульта доступа с выполнением индикации, распечатки, хранения информации, поступающей из ИПВ-У (причем соединение ИВП-У с АТ-ДУ, а через них с другими внешними устройствами, осуществляется с помощью: как линий связи, так и беспроводных технологий);
- дистанционное управление АТ-А (в том числе при их работе в составе локальных сетей),
- сбор и хранение в своей энергонезависимой памяти архивных данных и другой информации, поступившей из ИВП-У,
- взаимодействие (доступ, коммуникация) внешних устройств и систем с AT-A через интерфейсы RS-485, USB и опционально через Wi-Fi или Bluetooth.
- осуществление процесса считывания архивных данных с АТ-А (обслуживается до 14 экземпляров) и передачи этих данных во внешние устройства и (или) измерительные системы (при коммерческих взаиморасчетах и т.п.).

Общий вид AT-M-У (AT-M-И) с указанием места нанесения знака утверждения типа приведен на рисунке 1.

Схема пломбирования от несанкционированного доступа приведена на рисунке 2.

Рисунок 1 - Общий вид АТ-М-У (АТ-М-И)

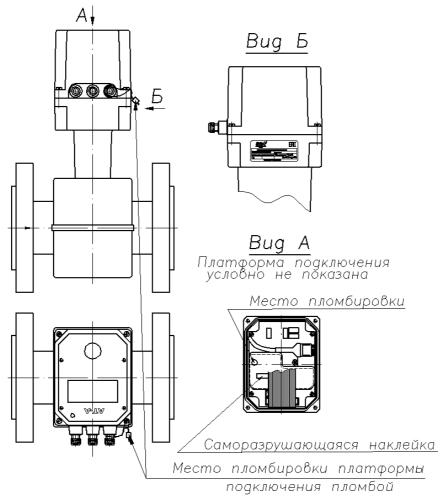


Рисунок 2 - Схема пломбирования от несанкционированного доступа

Программное обеспечение

Программное обеспечение (далее – Π O) АТ-А содержится в ИПВ и разделено на метрологически значимую и метрологически не значимую части. Метрологически значимая часть Π O АТ-А представлена в виде не изменяемой файловой системы, жестко прошитой в ИВП-У. Уровень защиты Π O АТ-А, от непреднамеренных и преднамеренных изменений, соответствует уровню защиты «высокий» по P 50.2.077-2014.

Конструкция АТ-А исключает возможность несанкционированного влияния на измерительную информацию. Идентификационные данные (признаки) ПО АТ-А указаны в таблице 2.

Таблица 2

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	AT-A
Номер версии (идентификационный номер) ПО	не ниже 4.01.XX
Цифровой идентификатор (контрольная сумма)	0x6C7088F8
метрологически значимой части ПО	
Алгоритм вычисления цифрового идентификатора ПО	CRC32

Метрологические и технические характеристики

Метрологические и технические характеристики АТ-А указаны в таблицах 3 - 11.

Таблица 3 — Общие характеристики измеряемой среды в АТ-А

Наименование характеристики	Значение
Удельная электрическая проводимость среды, См/м	от 10 ⁻³ до 10

Наименование характеристики	Значение
Диапазон измерений температуры среды, °С	от +1 до +150
Верхний предел измерений избыточного давления среды, МПа	1,6 (по заказу 2,5)
Диапазон измерений Dt — разности температур среды в двух ИТ, в зависимости от применяемых типов КТП, указанных в таблице 1, $^{\circ}$ С	от Dt_{\min} до 150 — Dt_{\min}
Значения наименьшей разности температур Dt_{\min} :	
- для закрытых ВСТ Dt_{\min} , ${}^{\circ}C;$	3
- для открытых ВСТ Dt_{\min} , ${}^{\circ}C$	1; 2; 3

Таблица 4 — Пределы измерений объемного расхода для AT-M и значения объема на импульс (только для модификации AT-A-5) каналами объемного расхода и объема

Номинальный	Значение объема на	Пределы измерений объемного расхода, $M^3/4$				
диаметр DN	импуль c , m^3 /имп	Нижний, G _{min}	Верхний, G _{max}			
15	0,0010	0,006	6			
20	0,0018	0,011	11			
25	0,0025	0,016	16			
32	0,005	0,030	30			
40	0,007	0,040	40			
50	0,010	0,060	60			
65	0,015	0,10	100			
80	0,025	0,16	160			
100	0,040	0,25	250			
150	0,10	0,60	600			
200	0,15	1,0	1000			
300	0,40	2,5	2500			

Таблица 5 — Пределы допускаемой относительной погрешности каналов объемного расхода и объема, в зависимости от классов AT-M, указанные по ГОСТ 28723-90

· · · · · · · · · · · · · · · · · · ·	Thereas we was a series and the series was a series when a first was a series when a series when a first was a series when a first was a series when a first was a series when a series which a series when a series when a series where the series where series when a series when a series where when a series when a se								
Поддиапазоны изме-	Пределы допускаемой относительной погрешности каналов объемно-								
рений	го расхода и объема, в зависимости от класса АТ-М (с учетом приме-								
	чания 2)								
	B1	B2	C1	C2	D1				
$400 < G_{max}/G \le 1000$	±2	не нормиру-	±3,5	не норми-	не нормиру-				
		ются		руются	ются				
$250 < G_{max}/G \le 400$	±2	±2	±3,5	±3,5	±5				
$150 < G_{max}/G \leq 250$	±2	±2	±3,5	±3,5	±3,5				
$100 < G_{max}/G \leq 150$	±2	±2	±2,5	±2,5	±2,5				
$50 < G_{max}/G \le 100$	±1,5	±2	±2	±2	±2				
$25 < G_{max}/G \le 50$	±1,2	±1,5	±1,5	±1,5	±1,5				
$1 \le G_{max}/G \le 25$	±1,0	±1,2	±1,2	±1,2	±1,2				

Примечания

- 1 Обозначения для объемного расхода: G_{max} наибольшее значение, G текущее значение
- 2 Пределы допускаемой относительной погрешности канала плотности воды (как функции давления и температуры) равны \pm 0,1 % (без учета погрешностей ПД и ТП), поэтому погрешности каналов объемного и массового расхода, объема и массы равны

Таблица 6 — Пределы допускаемой относительной погрешности каналов объемного расхода и объема, устанавливаемые по заказу (для коммерческого учета тепловой энергии, теплоносителя)

Класс точности канала	Пределы допускаемой относительной погрешности
1	$d_q = \pm (1 + 0.01 \times G_{\text{max}} / G)$, но не более $\pm 3.5 \%$
2	$d_q = \pm (2 + 0.02 G_{\max} / G)$, но не более $\pm 5 \%$

Таблица 7 — Пределы допускаемой относительной погрешности каналов тепловой энергии для закрытых ВСТ в зависимости от установленного класса точности

Supplified Bell Bublichmoeth of yelunomenholo kiluccu to moeth							
Класс точности канала	Пределы допускаемой относительной погрешности ка-						
	налов тепловой энергии, %						
1	$d_Q = \pm (2 + 4 Dt_{\min} / Dt + 0.01 G_{\max} / G)$						
2	$d_{Q} = \pm (3 + 4 Dt_{\min} / Dt + 0.02 G_{\max} / G)$						
Примечание — Для тупиковых и открытых ВСТ пределы погрешности каналов тепловой							
энергии АТ-А определяются специально, с учетом МИ 2553-99							

Таблица 8 — Пределы допускаемых погрешностей каналов параметров измеряемой среды, и их

элементов с учета погрешностей датчиков и без таковых

элементов е у тета погрешностей дат тиков и ост таковых	
Наименование характеристики	Значение
Пределы допускаемой абсолютной погрешности каналов тем-	$\pm (0.35 + 0.0025 > t)$
пературы измеряемой среды t, с учетом погрешности ТП, °С	
Пределы допускаемой абсолютной погрешности каналов тем-	$\pm (0.2 + 0.0005 \cdot t)$
пературы измеряемой среды t, без учета погрешности ТП, °С	
Пределы допускаемой приведенной к верхнему пределу изме-	±2
рений погрешности канала избыточного давления среды с	
учетом погрешности ПД, %	
Пределы допускаемой относительной погрешности канала	±1
избыточного давления среды без учета погрешности ПД, %	
Пределы допускаемой абсолютной погрешности измерений	
разности температур Dt в двух ИТ без учета погрешности	$\Delta_{\text{KT}} = \pm (0.04 + 0.002 \text{ Dt})$
КТП для открытых ВСТ, °С	
Пределы допускаемой относительной погрешности канала	\mathbf{a} , \mathbf{a} , \mathbf{b} t_{\min} $\ddot{\mathbf{o}}$
разности температур в двух ИТ без учета погрешности КТП	$d_{KT} = \pm \mathop{\mathfrak{C}}_{\bullet}^{\bullet} 0,5 + \frac{Dt_{\min}}{Dt} \mathop{\mathfrak{C}}_{\emptyset}^{\bullet}$
для закрытых ВСТ, %	C 2. 2
Пределы допускаемой относительной погрешности разности	$ \mathbf{d}_1 _{1} M_1 + \mathbf{d}_2 _{2} M_2$
масс среды в двух ИТ (массы среды, отобранной на ГВС) за	$d_{DM} = \pm \frac{ d_1 _{\max} M_1 + d_2 _{\max} M_2}{M_1 - M_2}$
отчетный период (с учетом примечания), %	111 111 2
Проможну получеской отностительной могранической получеской	+ 0.05
Пределы допускаемой относительной погрешности канала	$\pm 0,05$
текущего времени АТ-А, %	

Примечание — Приняты обозначения: $\left| \mathbf{d}_1 \right|_{\max}$ и $\left| \mathbf{d}_2 \right|_{\max}$ — наибольшие по абсолютной величине значения погрешностей каналов массы для рассматриваемой пары ИТ; M_1 и M_2 значения масс среды, прошедших по этим ИТ за отчетный период времени; $D\!M = M_1$ - M_2

Таблица 9 - Наибольшая масса АТ-М без присоединенных СИ, в зависимости от номинального диаметра DN их ППР

DN	15	20	25	32	40	50	65	80	100	150	200	300
Масса, кг	2,8	3,8	4	5,5	7	8	10	15	22	40	55	85

Таблица 10 - Габаритные размеры AT-M, в зависимости от номинального диаметра DN их ППР

DN	15	20	25	32	40	50	65	80	100	150	200	300
L	135	155	155	160	200	205	210	240	250	320	360	450
В	95	105	115	135	145	160	180	195	230	300	360	485
Н	230	235	245	265	265	285	300	330	350	430	480	600
Примечание — Приняты обозначения: L-длина, В-ширина, Н-высота, в миллиметрах												

Таблица 11 – Основные технические характеристики АТ-А

<u>Таблица 11 – Основные технические характеристики АТ-</u>	A
Наименование характеристики	Значение
Напряжение электропитания, В	
-автономное	постоянное: 7.2 ± 0.2
-сетевое	переменное: от 187 до 242
Частота тока сетевого электропитания, Гц	от 49 до 51
Мощность, потребляемая АТ-М, Вт, не более	
при питании:	
- автономном	0,5
- сетевом	6
Средняя наработка АТ-А на отказ, ч, не менее	75000
Средний срок службы АТ-А, лет, не менее	15
Срок восстановления работоспособности АТ-А, ч, не	
более	8
Емкость архивов АТ-А, не менее:	
- часового, суток;	60
- суточного, месяцев	12
- месячного (итоговые значения), лет	5
- погодового, лет	15
Количество записей в архиве диагностической инфор-	
мации (без измерительной информации), не менее	4096
Срок хранения данных в архиве АТ-А, при отключении	
электропитания, лет, не менее	10
Устойчивость и прочность к воздействию синусои-	
дальных вибраций низкой частоты с частотой перехода	группа N3 по ГОСТ Р 52931-2008
от 57 до 62 Гц	
Устойчивость и прочность к воздействию температуры	от + 5 до + 50
воздуха, окружающего АТ-А, °С:	(группа В4 по ГОСТ Р 52931)
Устойчивость и прочность к воздействию влажности	80 при 35 °C, при более низких
окружающего воздуха, %	температурах без конденсации
	влаги (группа В4 по ГОСТ Р
	52931-2008)
Степень защиты АТ-М-У (АТ-М-И), как оболочки, от	IP 65, IP 67, IP68 ^{1, 2}
воздействий окружающей среды, код ІР по	
ΓOCT 14254-2015	
Атмосферное давление, кПа	от 84 до 106
П	

Примечания:

- 1 Выполнение АТ-М-У (АТ-М-У5, АТ-М-И) по коду IP 65 осуществляется штатно; по коду IP 67 по заказу
- 2 Выполнение по коду IP 68 осуществляется только для модификаций AT-A-5 и AT-A-3 без подключения ТП и ПД, т.е. преимущественно для систем: XBC и водоотведения

Знак утверждения типа

наносится на титульные листы руководства по эксплуатации и паспорта типографским способом и на вычислительное устройство методом трафаретной печати.

Комплектность средства измерений

Таблица 12 — Комплектность АТ-А, в зависимости от модификации

Наименование	Количество		
АТ-М-У	1 шт. (кроме модификации АТ-А-5)		
AT-M-Y5	1 шт. (только для модификации АТ-А-5)		
АТ-М-И	1 шт. (только для модификаций AT-A-2 и AT-A-4)		
Наименование компонента АТ-А	Количество.		
КТП	1 шт. (кроме модификаций АТ-А-3 и АТ-А-5)		
ТΠ	до 1 шт. (только в модификации АТ-А-3)		
ПД	до 2 шт. по заказу (кроме модификации АТ-А-5)		
Блоки питания при смешанном и			
сетевом питании	до 1 шт		
Руководство по эксплуатации	1 экз.		
Методика поверки	1 экз. по заказу		
Паспорт	1 экз.		

Поверка

осуществляется по документу МП 26.51.53-004-71638574-2018 «Инструкция. Теплосчетчики AT-A. Методика поверки», утвержденному ФГБУ «ГНМЦ» Минобороны России 12.07.2018.

Основные средства поверки:

установка поверочная УП-150 (рег. № 24629-03);

установка поверочная УПРП-600 (рег. № 44980-10);

калибратор токовой петли Fluke-705 (рег. № 29194-05);

имитаторы термопреобразователей сопротивления МК3002–1-100 (рег. № 18854-99);

платформа подключения AT-A (AПВ1) — связующий компонент по ГОСТ Р 8.596-2002.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых теплосчетчиков АТ-А с требуемой точностью.

Знак поверки наносится в свидетельство о поверке и (или) в паспорт АТ-А.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к теплосчетчикам AT-A

Приказ Минстроя России от 17 марта 2014 г. № 99/пр Об утверждении Методики осуществления коммерческого учета тепловой энергии, теплоносителя (Зарегистрирован в Минюсте России 12.09.2014 г., № 34040)

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия

ГОСТ Р 51649-2014 Теплосчетчики для водяных систем теплоснабжения. Общие технические условия

ТУ 26.51.53-004-71638574-2017 Теплосчетчики АТ-А. Технические условия

Изготовитель

Общество с ограниченной ответственностью «Альтернативные энергетические технологии» (ООО «АЭТ»)

ИНН 7709518412

Адрес: 115201, г. Москва, Старокаширское шоссе, д. 2, корп. 12

Телефон: (495) 789-90-75 E-mail: <u>info@aet-energy.ru</u>

Испытательный центр

Федеральное государственное бюджетное учреждение «Главный научный метрологический центр» Министерства обороны Российской Федерации

Адрес: 141006, Московская область, г. Мытищи, ул. Комарова, д. 13

Телефон: (495) 583-99-23; факс: (495) 583-99-48

Аттестат аккредитации ФГБУ «ГНМЦ» Минобороны России по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311314 от 13.10.2015 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			А.В. Кулешов
	М.п.	« »	2018 г.