ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерительная АСУТП ТСП № 2 тит. 072/2 AO «ТАНЕКО»

Назначение средства измерений

Система измерительная АСУТП ТСП № 2 тит. 072/2 АО «ТАНЕКО» (далее - ИС) предназначена для измерений параметров технологического процесса (давления, перепада давления, уровня, объемного расхода, температуры, нижнего концентрационного предела распространения пламени (далее - НКПР)), формирования сигналов управления и регулирования.

Описание средства измерений

Принцип действия ИС основан на непрерывном измерении, преобразовании и обработке при помощи комплекса измерительно-вычислительного CENTUM модели VP (регистрационный номер в Федеральном информационном фонде (далее - регистрационный номер) 21532-08) (далее - CENTUM) и комплекса измерительно-вычислительного и управляющего противоаварийной защиты и технологической безопасности ProSafe-RS (регистрационный номер 31026-06) (далее - ProSafe-RS) входных сигналов, поступающих по измерительным каналам (далее - ИК) от первичных и промежуточных измерительных преобразователей (далее - ИП).

ИС осуществляет измерение параметров технологического процесса следующим образом:

- первичные ИП преобразуют текущие значения параметров технологического процесса в аналоговые унифицированные электрические сигналы силы постоянного тока от 4 до 20 мА:
- аналоговые унифицированные электрические сигналы силы постоянного тока от 4 до 20 мА от первичных ИП поступают на входы преобразователей измерительных серии Н модели HiC2025 (регистрационный номер 40667-09) (далее HiC2025) и далее на модули ввода аналоговых сигналов AAI143 CENTUM VP (далее AAI143) и SAI143 ProSafe-RS (далее SAI143) (часть сигналов поступает на модули ввода аналоговых сигналов без барьеров искрозащиты);
- сигналы управления и регулирования (аналоговые сигналы силы постоянного тока от 4 до 20 мА) генерируются модулями вывода AAI543 CENTUM VP (далее AAI543) через преобразователи измерительные серии Н модели HiC2031 (регистрационный номер 40667-09) (далее HiC2031).

Цифровые коды, преобразованные посредством модулей ввода аналоговых сигналов в значения физических параметров технологического процесса, отображаются на мнемосхемах мониторов операторских станций управления в виде числовых значений, гистограмм, трендов, текстов, рисунков и цветовой окраски элементов мнемосхем, а также интегрируется в базу данных ИС.

По функциональным признакам ИС делится на две независимые подсистемы: распределенная система управления технологическим процессом и система противоаварийной защиты. ИС включает в себя также резервные ИК.

Состав средств измерений, входящих в состав первичных ИП ИК, указан в таблице 1.

Таблица 1 - Средства измерений, входящие в состав первичных ИП ИК

Наименование ИК	Наименование первичного ИП ИК	Регистрационный номер	
ИК давления	Преобразователь давления измерительный ЕЈХ модели ЕЈХ 530 (далее - ЕЈХ 530)	28456-09	

Наименование ИК	Наименование первичного ИП ИК	Регистрационный номер
ИК давления	Преобразователь давления измерительный EJA модели EJA 430 (далее - EJA 430)	14495-09
	Преооразователь давления измерительный ЕЈА модели ЕЈА 530 (далее - ЕЈА 530)	
ИК перепада давления	Преобразователь давления измерительный EJX модели EJX 110 (далее - EJX 110)	28456-09
ИК уровня	Уровнемер микроволновый бесконтактный VEGAPULS 6* модификации VEGAPULS 62 (далее - VEGAPULS 62) Уровнемер контактный микроволновый VEGAFLEX 6* модификации VEGAFLEX 61	27283-09
	(далее - VEGAFLEX 61)	27284-09
ИК объемного расхода	Расходомер-счетчик вихревой объемный YEWFLO DY (далее - YEWFLO DY)	17675-09
	Термопреобразователь сопротивления платиновый серии 65 (далее - ТСП 65) Термопреобразователь сопротивления с пленочным чувствительным элементом ТСП Метран-200 модели ТСП Метран-246 (далее - ТСП Метран-246)	22257-11 26224-07
ИК	Термопреобразователь сопротивления взрывозащищённый Метран-250 модификации ТСП Метран-256 (далее - ТСП Метран-256)	21969-11
температуры	Преобразователь термоэлектрический ТХА Метран-200 исполнения ТХА Метран-241 (далее - ТХА Метран-241) Преобразователь измерительный 248 (далее - ПИ 248)	19985-00 28034-05
	Преобразователь измерительный 644 (далее - ПИ 644)	14683-09
	Преобразователь температуры Метран-280 модели Метран-286 (далее - Метран-286)	23410-08
	Преобразователь температуры Метран-280 модели Метран-286 (далее - ПТ Метран-286)	23410-13
ИК НКПР	Газоанализатор ULTIMA X модификации ULTIMA XIR (далее - ULTIMA XIR)	26654-09
THE THEFT	Датчик оптический инфракрасный Dräger модели Polytron 2IR (далее - Polytron 2IR)	46044-10

ИС выполняет следующие функции:

- автоматизированное измерение, регистрация, обработка, контроль, хранение и индикация параметров технологического процесса;
- предупредительная и аварийная сигнализация при выходе параметров технологического процесса за установленные границы и при обнаружении неисправности в работе оборудования;
- управление технологическим процессом в реальном масштабе времени; противоаварийная защита оборудования установки;
- отображение технологической и системной информации на операторской станции управления;
 - накопление, регистрация и хранение поступающей информации;
 - самодиагностика;
 - автоматическое составление отчетов и рабочих (режимных) листов;
- защита системной информации от несанкционированного доступа программным средствам и изменения установленных параметров.

Программное обеспечение

Программное обеспечение (далее - ПО) ИС обеспечивает реализацию функций ИС.

Защита ПО ИС от непреднамеренных и преднамеренных изменений и обеспечение его соответствия утвержденному типу осуществляется путем идентификации, защиты от несанкционированного доступа.

Идентификационные данные ПО ИС приведены в таблице 2.

Таблица 2 - Идентификационные данные ПО ИС

Инандификаннали за панина (признаки)	Значение			
Идентификационные данные (признаки)	CENTUM	ProSafe-RS		
Идентификационное наименование ПО	CENTUM VP	ProSafe-RS		
Номер версии (идентификационный номер) ПО, не ниже	R4.03	R2.03		
Цифровой идентификатор ПО	-	-		

ПО ИС защищено от несанкционированного доступа, изменения алгоритмов и установленных параметров путем введения логина и пароля, ведения доступного только для чтения журнала событий.

Уровень защиты ПО ИС «средний» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Основные технические характеристики ИС представлены в таблице 3.

Таблица 3 - Основные технические характеристики ИС

Наименование характеристики	Значение
Количество входных ИК, не более	320
Количество выходных ИК, не более	48
Параметры электрического питания:	
- напряжение переменного тока, В	380^{+57}_{-76} ; 220^{+22}_{-33}
- частота переменного тока, Гц	50±1
Потребляемая мощность, кВ·А, не более	20
Габаритные размеры отдельных шкафов, мм, не более:	
- ширина	1000
- высота	2000
- глубина	1000
Масса отдельных шкафов, кг, не более	400
Условия эксплуатации:	
а) температура окружающей среды, °С:	
- в месте установки вторичной части ИК	от +15 до +30
- в местах установки первичных ИП ИК	от -40 до +50
б) относительная влажность, %, не более	от 30 до 80,
	без конденсации влаги
в) атмосферное давление, кПа	от 84,0 до 106,7 кПа

Примечание - ИП, эксплуатация которых в указанных диапазонах температуры окружающей среды и относительной влажности не допускается, эксплуатируются при температуре окружающей среды и относительной влажности, указанных в технической документации на данные ИП.

Метрологические характеристики ИК ИС приведены в таблице 4.

Таблица 4 - Метрологические характеристики ИК ИС

	Метрологические характеристики ИК Метрологические характеристики ИК			Метрологические характеристики измерительных компонентов ИК				
Men	метрологические характеристики итк		Первичный ИП		Вторичный ИП			
Наимено-вание ИК	Диапазоны измерений	Пределы допускаемой основной погрешности	Тип (выходной сигнал)	Пределы допускаемой основной погрешности	Тип барьера искро- защиты	Типа модуля ввода/вывода	Пределы допускаемой основной погрешности	
1	2	3	4	5	6	7	8	
ИК давления	от 0 до 100 кПа; от 0 до 250 кПа; от 0 до 400 кПа; от 0 до 0,6 МПа; от 0 до 800 кПа; от 0 до 1 МПа; от 0 до 1,6 МПа; от -100 до 200 кПа ¹⁾ ; от -0,1 до 2 МПа ¹⁾	g: от ±0,20 до ±0,54 %	ЕЈХ 530 (от 4 до 20 мА)	g от ±0,10 до ±0,46 %	HiC2025	AAI143 или SAI143	g ±0,15 %	
	от 0 до 0,25 МПа; от -0,1 до 3 МПа ¹⁾	g: от ±0,19 до ±0,61 %	ЕЈА 430 (от 4 до 20 мА)	g от ±0,075 до ±0,525 %	HiC2025	AAI143	g ±0,15 %	
	от 0 до 0,25 МПа; от 0 до 0,6 МПа; от 0 до 2 МПа ¹⁾	g: от ±0,28 до ±0,69 %	ЕЈА 530 (от 4 до 20 мА)	g от ±0,2 до ±0,6 %	HiC2025	AAI143	g ±0,15 %	
ИК перепада давления	от 0 до 0,016 МПа; от -100 до 100 кПа ¹⁾	g от ±0,18 до ±0,69 %	ЕЈХ 110 (от 4 до 20 мА)	g от ±0,04 до ±0,6 %	HiC2025	AAI143	g ±0,15 %	
ИК уровня ²⁾	от 0 до 19100 мм от 0 до 18950 мм от 0 до 18943 мм от 0 до 18900 мм от 0 до 35 м ¹⁾	Δ: ±31,69 мм Δ: ±31,45 мм Δ: ±31,43 мм Δ: ±31,36 мм см. примечание 3	VEGAPULS 62 (от 4 до 20 мА)	Δ: ±3 мм	HiC2025	SAI143	g ±0,15 %	

1	2	3	4	5	6	7	8
	от 0 до 3800 мм	Δ : ±7,09 мм				ААІ143 или SAI143	g ±0,15 %
	от 80 до 3800 мм	Δ : $\pm 6,97$ mm					
ИК	от 0 до 2800 мм	Δ : ±5,68 mm	VEGAFLEX 61	до 20 м Δ : ± 3 мм;	HiC2025		
уровня ²⁾	от 0 до 1800 мм	Δ : $\pm 4,44$ mm	(от 4 до 20 мА)	от 20 м d : ±0,015 %	11102023		
	от 0,08 до 32 м ¹⁾	см. примечание 3					
ИК объемного расхода	от 0 до 2 м ³ /ч; от 0 до 200 м ³ /ч; от 0 до 250 м ³ /ч	см. примечание 3	YEWFLO DY (от 4 до 20 мА)	в зависимости от Ду d: жидкость: - 25 мм: $\pm 1,0$ % при $20000 \le \text{Re} < 1500\text{D}$ и $\pm 0,75$ % при $1500\text{D} \le \text{Re}$; - от 150 до 400 мм: $\pm 1,0$ % при $40000 \le \text{Re} < 1000\text{D}$ и $\pm 0,75$ % при $10000 \le \text{Re}$	HiC2025	AAI143	g ±0,15 %
	от -50 до +150 °C	Δ: ±0,64 °C		ТСП 65:			
	от 0 до +100 °C	Δ: ±0,48 °C	ТСП 65	Δ : ±(0,15+0,002· t), °C;			
ИК темпера-	от -50 до +450 °С ¹⁾	см. примечание 3	(HCX Pt 100) ПИ 248 (от 4 до 20 мА)	ПИ 248: g ±0,1 % или Δ: ±0,2 °C (берут большее значение)	HiC2025	AAI143	g ±0,15 %
туры	от 0 до +100 °C	Δ: ±0,93 °C		ТСП 65:			
	от -196 до +600 °С ¹⁾	см. примечание 3	ТСП 65 (HCX Pt 100) ПИ 248 (от 4 до 20 мА)	∆: ±(0,3+0,005· t), °C; ПИ 248: g: ±0,1 % или ∆: ±0,2 °C (берут большее значение)	HiC2025	SAI143	g ±0,15 %

1	2	3	4	5	6	7	8
	от -50 до +120 °С ¹⁾	Δ: ±1,06 °C	ТСП Метран- 246 (HCX Pt 100) ПИ 644 (от 4 до 20 мА)	ТСП Метран-246: Δ: ±(0,3+0,005· t), °C; ПИ 644: Δ: ±0,15 °C (цифровой сигнал) и g ±0,03 % (ЦАП)	HiC2025	SAI143	g ±0,15 %
	от -50 до +150 °C	Δ: ±1,23 °C	ТСП Метран-	ТСП Метран-256:			
	от -50 до +500 °С ¹⁾	см. примечание 3	256 (HCX Pt 100) ПИ 644 (от 4 до 20 мА)	Δ : $\pm (0,3+0,005 \cdot t)$, °C; ПИ 644: Δ : $\pm 0,15$ °C (цифровой сигнал) и $\pm 0,03$ % (ЦАП)	HiC2025	AAI143	g ±0,15 %
	от -40 до +120 °C	Δ: ±3,77 °C		ТХА Метран-241:		AAI143	g ±0,15 %
ИК темпера-	от -40 до +150 °C	Δ: ±3,78 °C	ТХА Метран- 241 (HCX XA(K)) ПИ 644 (от 4 до 20 мА)	Δ: ±3,25, °C;	HiC2025		
туры	от -40 до +300 °С ¹⁾	см. примечание 3		ПИ 644: Δ : ±0,5 °C (цифровой сигнал) и \mathfrak{g} ±0,03 % (ЦАП); Δ : ±0,5 °C (компенсация температуры холодных концов)			
	от 0 до +50 °C	Δ: ±0,45 °C		Δ: ±0,4°C или g ±0,15 %			
	от -50 до +150 °C	Δ: ±0,55 °C	метран-286	(берут большее	HiC2025	AAI143 или	g ±0,15 %
	от -50 до +500 °С ¹⁾	см. примечание 3	(от 4 до 20 мА)	значение)	SAI143	SAI143	g =0,13 /0
	от 0 до +100 °C	+100 °C	Δ: ±0,4°C или g ±0,15 %				
	от -50 до +500 °С ¹⁾	см. примечание 3	(от 4 до 20 мА)	(берут большее значение)	HiC2025	AAI143	g ±0,15 %
ИК НКПР	от 0 до 50 % НКПР (СН ₄)	Δ: ±5,51 % ΗΚΠΡ	ULTIMA XIR (от 4 до 20 мА)	Δ: ±5 % НКПР	-	SAI143	g ±0,1 %

1	2	3	4	5	6	7	8
	от 0 до 50 % НКПР						
	(C_3H_8)						
	от 0 до 50 % НКПР	Δ: ±5,51 % ΗΚΠΡ	Polytron 2IR	Δ: ±5 % ΗΚΠΡ		SAI143 g	g ±0,1 %
	(C_3H_8)	2. 23,31 % THEIR	(от 4 до 20 мА)	∆. ±3 /0 HIXIII			9 ±0,1 70
ИК силы	от 4 до 20 мА	g: ±0,15 %			HiC2025	AAI143 или	g ±0,15 %
тока	01 4 до 20 мА	g ±0,10 %	_	-	-	SAI143	g ±0,1 %
ИК		g ±0,32 %			HiC2031		g ±0,32 %
воспроиз-	от 4 до 20 мА		_	_		AAI543	
ведения	01 1 A0 20 MI	g: ±0,3 %			-	11111373	g ±0,3 %
силы тока							

Указан максимальный диапазон измерений (диапазон измерений может быть настроен на меньший диапазон в соответствии с эксплуатационной документацией на первичный ИП ИК). $^{2)}$ Шкала ИК установлена в ИС в процентах (от 0 до 100 %).

Примечания

- 1 НСХ номинальная статическая характеристика, ЦАП цифро-аналоговое преобразование.
- 2 Приняты следующие обозначения:
- Δ абсолютная погрешность; в единицах измеряемой величины;
- d относительная погрешность; %;
- g приведенная погрешность; %;
- t измеренная температура, °C;
- Ду диаметр условного прохода, мм;
- Re число Рейнольдса.

- 3 Пределы допускаемой основной погрешности ИК рассчитывают по формулам:
- абсолютная D_{uv} , в единицах измеряемой величины:

$$D_{_{\rm HK}} = \pm 1.1 \times \sqrt{D_{_{\rm III}}^{^{2}} + \mathop{g}\limits_{\mbox{\column}}^{\mbox{\column}} \frac{X_{_{\rm max}} - X_{_{\rm min}}}{100} \mathop{\ddot{o}}^{^{2}}_{\mbox{\column}}} \,,$$

где D_{m} пределы допускаемой основной абсолютной погрешности первичного ИП ИК, в единицах измерений измеряемой величины;

 ${\bf g}_{_{\rm BH}}$ - пределы допускаемой основной приведенной погрешности вторичной части ИК, %;

X_{пахх} - значение измеряемого параметра, соответствующее максимальному значению диапазона аналогового сигнала, в единицах измерений измеряемой величины;

х - значение измеряемого параметра, соответствующее минимальному значению границы диапазона аналогового сигнала, в единицах измерений измеряемой величины;

- относительная $d_{_{\rm ИК}}$ %:

$$\label{eq:discrete_mass} \mathbf{d}_{\mathrm{HK}} = \pm 1.1 \times \sqrt{\mathbf{d}_{\mathrm{IIII}}^2 + \mathop{\text{ee}}_{\mathbf{c}}^2 \mathbf{g}_{\mathrm{BII}} \times \frac{\mathbf{X}_{\mathrm{max}} - \mathbf{X}_{\mathrm{min}}}{\mathbf{X}_{\mathrm{HSM}}} \frac{\ddot{\mathbf{o}}^2}{\dot{\mathbf{o}}}} \,,$$

где $d_{_{\Pi\Pi}}$ - пределы допускаемой основной относительной погрешности первичного ИП ИК, %;

приведенная **Q**_{ик} %:

$$g_{MK} = \pm 1.1 \times \sqrt{g_{\Pi\Pi}^2 + g_{B\Pi}^2}$$

где 9пп - пределы допускаемой основной приведенной погрешности первичного ИП ИК, %.

- 4 Для расчета погрешности ИК в условиях эксплуатации:
- приводят форму представления основных и дополнительных погрешностей измерительных компонентов ИК к единому виду (приведенная, относительная, абсолютная);
- для каждого измерительного компонента ИК рассчитывают пределы допускаемых значений погрешности в условиях эксплуатации путем учета основной и дополнительных погрешностей от влияющих факторов.

Пределы допускаемых значений погрешности измерительного компонента ИК в условиях эксплуатации рассчитывают по формуле

$$D_{CH} = \pm \sqrt{D_0^2 + \mathop{a}\limits_{i=0}^{n} D_i^2} \ ,$$

где D_0 - пределы допускаемой основной погрешности измерительного компонента;

от погрешности измерительного компонента от *i*-го влияющего фактора в условиях эксплуатации при общем числе *n* учитываемых влияющих факторов.

Для каждого ИК рассчитывают границы, в которых с вероятностью равной 0,95 должна находиться его погрешность в условиях эксплуатации, по формуле

$$D_{\text{ИК}} = \pm 1,1 \times \sqrt{\sum_{j=0}^{k} (D_{\text{CИ}j})^2}$$
,

где $D_{\text{CИ}j}$ - пределы допускаемых значений погрешности $D_{\text{CИ}}$ *j*-го измерительного компонента ИК в условиях эксплуатации.

Знак утверждения типа

наносится на титульный лист паспорта типографским способом.

Комплектность средства измерений

Комплектность ИС представлена в таблице 5.

Таблица 5 - Комплектность ИС

Наименование	Обозначение	Количество	
Система измерительная АСУТП ТСП № 2	_	1 шт.	
тит. 072/2 AO «ТАНЕКО», заводской № 072/2	_	1 ш1.	
Система измерительная АСУТП ТСП № 2			
тит. 072/2 AO «ТАНЕКО». Руководство	-	1 экз.	
по эксплуатации			
Система измерительная АСУТП ТСП № 2	1 22		
тит. 072/2 AO «ТАНЕКО». Паспорт	_	1 экз.	
Государственная система обеспечения единства			
измерений. Система измерительная АСУТП	MΠ 0510/1-311229-2017	1 экз.	
ТСП № 2 тит. 072/2 АО «ТАНЕКО». Методика	WIII 0310/1-311229-2017	1 9K3.	
поверки			

Поверка

осуществляется по документу МП 0510/1-311229-2017 «Государственная система обеспечения единства измерений. Система измерительная АСУТП ТСП № 2 тит. 072/2 АО «ТАНЕКО». Методика поверки», утвержденному ООО Центр Метрологии «СТП» 5 октября 2017 г.

Основные средства поверки:

- средства поверки в соответствии с документами на поверку средств измерений, входящих в состав ИС;
- калибратор многофункциональный MC5-R-IS (регистрационный номер 22237-08), диапазон воспроизведения силы постоянного тока от 0 до 25 мА; пределы допускаемой основной погрешности воспроизведения $\pm (0.02 \%$ показания + 1 мкА); диапазон измерений силы постоянного тока ± 100 мА; пределы допускаемой основной погрешности измерений $\pm (0.02 \%$ показания + 1,5 мкА).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке ИС.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к системе измерительной АСУТП ТСП № 2 тит. 072/2 АО «ТАНЕКО»

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Акционерное общество «ТАНЕКО» (АО «ТАНЕКО»)

ИНН 1651044095

Адрес: 423570, Российская Федерация, Республика Татарстан, г. Нижнекамск, Промзона

Телефон: (8555) 49-02-02, факс: (8555) 49-02-00

Web-сайт: http://taneco.ru E-mail: referent@taneco.ru

Испытательный центр

Общество с ограниченной ответственностью Центр Метрологии «СТП»

Адрес: 420107, Российская Федерация, Республика Татарстан, г. Казань, ул. Петербургская, д. 50, корп. 5, офис 7

Телефон: (843) 214-20-98, факс: (843) 227-40-10

Web-сайт: http://www.ooostp.ru

E-mail: office@ooostp.ru

Аттестат аккредитации ООО Центр Метрологии «СТП» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311229 от 30.07.2015 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

С.С. Голубев

М.п. «___»____2018 г.