

Государственная корпорация по атомной энергии «Росатом»
Федеральное государственное унитарное предприятие
РОССИЙСКИЙ ФЕДЕРАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР
Всероссийский научно-исследовательский институт экспериментальной физики

ЦЕНТР ИСПЫТАНИЙ СРЕДСТВ ИЗМЕРЕНИЙ ФГУП «РФЯЦ-ВНИИЭФ»

Аттестат аккредитации № RA.RU.311769

607188, Нижегородская обл. г. Саров. пр. Мира. д. 37 Телефон 83130 22224 Факс 83130 22232 E-mail: shvn@olit.vniief.ru

СОГЛАСОВАНО

Главный конструктор КБ НИР ООО «НПП ИТ»

С.А. Моренко

○≠ 2017

УТВЕРЖДАЮ

Руководитель ЦИ СИ, главный метролог ФГУП «РФЯЦ-ВНИИЭФ»

В.Н. Щеглов

2017

Датчики вибрации ИТ12.35.000

Методика поверки

А3009.0197.МП-17

Содержание

	1	Операции поверки	4
	2	Средства поверки	4
	3	Требования к квалификации поверителей	4
	4	Требования безопасности	5
	5	Условия поверки	5
	6	Подготовка к проведению поверки	
	7	Проведение поверки	6
	8	Оформление результатов поверки	9
	Пр	иложение А (справочное) Перечень документов, на которые д	данны
ссыл	_	тексте МП	
	Пр	иложение Б (справочное) Перечень принятых сокращений	10

Настоящая методика поверки распространяется на датчики вибрации ИТ12.35.500.

Датчик вибрации ИТ12.35.500 (далее по тексту - датчик) предназначен для измерений виброускорения и виброскорости механических систем, совершающих вращательные и возвратно-поступательные движения.

Принцип действия датчика основан на генерации электрического сигнала, пропорционального воздействующему ускорению.

Конструктивно датчик состоит из размещенных в едином корпусе трех координатного акселерометра, выходное напряжение которого виброускорению, аналого-цифрового преобразователя, пропорционально микроконтроллера, цифро-аналогово преобразователя. Преобразователь имеет три аналоговых выхода (оси Z, X, Y). Аналоговые выходы конфигурируются при производстве по требованию потребителя. При конфигурировании задается напряжение и измеряемый параметр: выхода: ток ИЛИ квадратическое значение (СКЗ) виброскорости или СКЗ виброускорения. Параметры конфигурации приводятся в паспорте на датчик.

Порт 1 цифрового выхода предназначен для вывода СКЗ виброускорения и СКЗ виброскорости по протоколу MODBUS через интерфейс RS485. Датчик является slave устройством. Адреса регистров для считывания значений паспорте Для приводятся датчик. считывания данных может В на использоваться любое оборудование, интерфейс **RS485** имеющее обеспечивающее функции MODBUS master устройства.

Крепление датчика к объекту контроля осуществляется при помощи болта M6.

Питание датчика осуществляется от внешнего источника постоянного тока напряжением от 21 до 27 В, потребляемая мощность не более 6 Вт.

Данная МП устанавливает методику первичной и периодической поверок датчика. Первичной поверке датчики подвергаются при выпуске из производства и после ремонта. Организация и проведение поверки в соответствии с действующим «Порядок проведения поверки средств измерений...».

Межповерочный интервал – 1 год.

Перечень документов, на которые даны ссылки в тексте методики поверки, приведен в приложении А.

Перечень принятых сокращений приведен в приложении Б.

1 Операции поверки

- 1.1 При проведении первичной и периодической поверок датчика должны быть выполнены операции, указанные в таблице 1.
- 1.2 При получении отрицательного результата какой-либо операции поверки дальнейшая поверка не проводится, и результаты оформляются в соответствии с 8.2.
- 1.3 Протокол поверки ведется в произвольной форме. При проведении периодической поверки допускается сокращать проверяемые режимы (диапазоны) измерений датчика в соответствии с потребностями потребителя, при этом в свидетельстве о поверке должна быть сделана запись об ограничении использования режимов (диапазонов) измерений.

Таблица 1 – Перечень операций при поверке

	Номер	Обязательность проведения при	
Наименование операции	пункта	поверке	
	методики	первич- ной	перио- дической
1 Внешний осмотр	7.1	+	+
2 Опробование	7.2	+	+
3 Проверка диапазона и основной абсолютной погрешности измерений СКЗ виброускорения	7.3	+	+
4 Проверка диапазона и основной абсолютной погрешности измерений СКЗ виброскорости	7.4	+	+
5 Проверка неравномерности частотной характеристики	7.5	+	+
6 Поверка ПО	7.6	+	+

2 Средства поверки

2.1 При проведении поверки применяют СИ и оборудование, приведенные в таблице 2.

Допускается использовать другие СИ и оборудование, обеспечивающие требуемые диапазоны и точности измерений.

2.2 Все применяемые СИ должны быть поверены и иметь действующие свидетельства о поверке. Оборудование, необходимое для проведения испытаний, должно быть аттестовано согласно ГОСТ Р 8.568

3 Требования к квалификации поверителей

К проведению поверки допускается персонал, изучивший ЭД на датчик, данную методику поверки и имеющий опыт работы с оборудованием, перечисленным в таблице 2.

Таблица 2 – Перечень СИ и оборудования, применяемых при поверке

	Требуемые характеристики		Рекомен-		
Наименование СИ	Диапазон измерений	Погреш- ность измерений	дуемый тип	Кол- во	Пункт МП
Поверочная виброустановка 2-го разряда по ГОСТ Р 8.800	от 10 до 1000 Гц, 200 м/c ²	±2,0 %	DVC-500	1	7.2, 7.3,
Источник питания постоянного тока	от 18 до 30 В, не менее 500 мА	±2,0 %	SPD-73606	1	7.4, 7.5
Мультиметр цифровой	от 0 до 10 В, от 4 до 20 мА	±0,01 %, ±0,05 %	34401A	1	
Персональный компьютер	1 OOecheчивающее функции Modbus master				7.2, 7.3, 7.4, 7.5, 7.6

4 Требования безопасности

- 4.1 При проведении поверки необходимо руководствоваться «Правилами устройства установок» и «Правилами техники безопасности при эксплуатации электроустановок потребителей». Меры безопасности при подготовке и проведении измерений должны соответствовать требованиям ГОСТ 12.2.007.0 и правилам по охране труда ПОТ РМ-016.
- 4.2 При проведении поверки должны быть выполнены все требования безопасности, указанные в ЭД на датчик, средства поверки и испытательное оборудование.

Все используемое оборудование должно иметь защитное заземление.

5 Условия поверки

При проведении поверки должны быть соблюдены следующие условия:

- температура окружающего воздуха от 18 до 25 °C;
- относительная влажность окружающего воздуха до 80 %;
- требования к атмосферному давлению не предъявляются;
- напряжение питающей сети от 198 до 244 В;
- частота питающей сети от 49 до 51 Гц.

6 Подготовка к проведению поверки

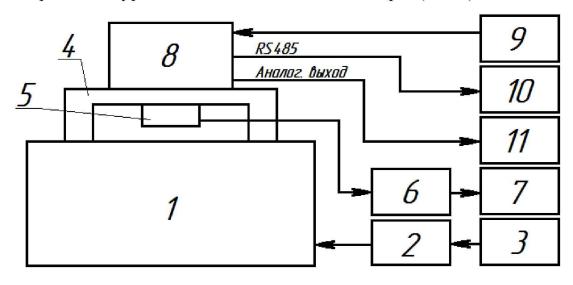
- 6.1 Перед проведением поверки подготавливают СИ и оборудование к работе в соответствии с ЭД на них.
- 6.2 Проверяют наличие действующих свидетельств о поверке на СИ, а также соответствие условий поверки разделу 5.

7 Проведение поверки

7.1 Внешний осмотр

При внешнем осмотре необходимо проверить:

- целостность корпуса датчика;
- состояние поверхностей (отсутствие вмятин, царапин, задиров);
- отсутствие повреждений соединительных жгутов и разъёмов.


При наличии вышеуказанных дефектов испытания не проводят до их устранения. Если дефекты устранить невозможно, датчик бракуют.

7.2 Опробование

7.2.1 Опробование проводят на поверочной виброустановке 2-го разряда по ГОСТ Р 8.800. Собирают схему измерений в соответствии с рисунком 1.

Датчик закрепляют при необходимости через технологический переходник (4) на столе вибростенда (1) так, чтобы ось Z совпадала с направлением колебаний, воспроизводимых виброустановкой. Конструкция технологического переходника должна обеспечивать соостность измерительных осей датчика и эталонного ВИП. Включают и прогревают измерительные приборы в соответствии с ЭД на них.

- 7.2.2 Воспроизводят на частоте (40 ± 1) Γ ц уровень СКЗ виброускорения не менее 10 м/c^2 и фиксируют выходной сигнал датчика.
 - 7.2.3 Повторяют операции по 7.2.1 и 7.2.2 для осей X и Y.
- 7.2.4 Датчик считают работоспособным, если уровень выходного сигнала превышает уровень помех не менее чем в 10 раз (20 дБ).

1 - вибростенд;

2 - усилитель мощности;

3 - генератор;

4 - технологический переходник;

5 - эталонный ВИП

6 - согласующий усилитель;

7, 11 – регистратор (34401А)

8 - испытуемый датчик;

9 - источник питания постоянного тока (U = 24 B)

10 - ПК имеющей интерфейс RS485 и обеспечивающей функции MODBUS master устройства;

- 7.3 Проверка диапазона и основной абсолютной погрешности измерений СКЗ виброускорения
- 7.3.1 Проверку диапазона и основной абсолютной погрешности измерений СКЗ виброускорения проводят на установке, схема которой приведена на рисунке 1. Последовательно задают колебания на базовой частоте (40,0±0,1) Гц с СКЗ виброускорения 0,5, 1, 2, 5, 10, 20, 50 м/с² и с помощью мультиметра (11) измеряют выходной сигнал испытуемого датчика. Уровень воспроизводимого установкой СКЗ виброускорения контролируют по эталонному ВИП.
- 7.3.2 При использовании выхода RS485 с помощью программного обеспечения с функцией MODBUS MASTER обеспечить опрос регистров в соответствии с конфигурацией. Значения измерений считать в формате float.
- 7.3.3 При использовании аналогового выхода от 4 до 20 мА, рассчитывают измеренное значение виброускорения A_{usmi} , м/с², по формуле

$$A_{u_{3Mi}} = \frac{I_{u_{3Mi}} - 4}{16} \cdot A_{\text{max}} \,, \tag{1}$$

где $I_{u_{3Mi}}$ — измеренный выходной ток датчика при i-ом входном воздействии, мА; A_{max} — максимальное значение диапазона, 50 м/с².

7.3.4 При использовании аналогового выхода от 0 до 10 В, рассчитывают измеренное значение виброускорения $A_{uзмi}$, м/с², по формуле

$$A_{u_{3Mi}} = \frac{U_{u_{3Mi}}}{10} \cdot A_{\text{max}}, \tag{2}$$

где $U_{u_{3Mi}}$ — измеренное выходное напряжение датчика при i-ом входном воздействии, B:

 A_{max} — максимальное значение диапазона, 50 м/с².

7.3.5 Рассчитывают абсолютную погрешность измерений СКЗ виброускорения Δ_{Ai} , м/с², по формуле

$$\Delta_{Ai} = A_{usmi} - A_{saoi}, \tag{3}$$

где $A_{u_{3Mi}}$ — измеренное датчиком *i*-ое воспроизводимое установкой СКЗ виброускорения, м/с²;

 $A_{3a\partial i}$ — измеренное эталонным ВИП *i*-ое воспроизводимое установкой СКЗ виброускорения, м/с².

- 7.3.6 Повторяют операции по 7.3.1 7.3.5 для измерительных осей X и Y.
- 7.3.7 Датчик считают выдержавшим испытания, если основная абсолютная погрешность измерений СКЗ виброускорения находится в пределах $\pm (0,1\cdot A_{usm}+0,1)$ м/с².
- 7.4 Проверка диапазона и основной абсолютной погрешности измерений СКЗ виброскорости
- 7.4.1 Проверку диапазона и основной абсолютной погрешности измерений СКЗ виброскорости проводят на установке, схема которой приведена на рисунке 1. Последовательно задают колебания на базовой частоте

- (40,0±0,1) Гц с СКЗ виброскорости 0,5, 1, 2, 5, 10, 15, 20 мм/с и с помощью мультиметра (11) измеряют выходной сигнал испытуемого датчика. Уровень воспроизводимого установкой СКЗ виброскорости контролируют по эталонному ВИП.
- 7.4.2 При использовании выхода RS485 с помощью программного обеспечения с функцией MODBUS MASTER обеспечить опрос регистров в соответствии с конфигурацией. Значения измерений считать в формате float.
- 7.4.3 При использовании аналогового выхода от 4 до 20 мА, рассчитывают измеренное значение виброскорости V_{usmi} , мм/с, по формуле

$$V_{u_{3Mi}} = \frac{I_{u_{3Mi}} - 4}{16} \cdot V_{\text{max}} \,, \tag{4}$$

где $I_{u_{3Mi}}$ — измеренный выходной ток датчика при i-ом входном воздействии, мА; V_{max} — максимальное значение диапазона, 20 мм/с.

7.4.4 При использовании аналогового выхода от 0 до 10 В, рассчитывают измеренное значение виброскорости V_{usmi} , мм/с, по формуле

$$V_{u_{3Mi}} = \frac{U_{u_{3Mi}}}{10} \cdot V_{\text{max}} \,, \tag{5}$$

где $U_{u_{3Mi}}$ — измеренное выходное напряжение датчика при i-ом входном воздействии, B;

 V_{max} — максимальное значение диапазона, 20 мм/с.

7.4.5 Рассчитывают абсолютную погрешность измерений СКЗ виброскорости Δ_{V_1} , мм/с, по формуле

$$\Delta_{Vi} = V_{u_{3Mi}} - V_{sa\partial i}, \tag{6}$$

где $V_{u_{3Mi}}$ — измеренное датчиком *i*-ое воспроизводимое установкой СКЗ виброскорости, мм/с;

 $V_{3a\partial i}$ — измеренное эталонным ВИП *i*-ое воспроизводимое установкой СКЗ виброскорости, мм/с.

- 7.4.6 Повторяют операции по 7.4.1 7.4.2 для измерительных осей X и Y.
- 7.4.7 Датчик считают выдержавшим испытания, если основная абсолютная погрешность измерений СКЗ виброскорости находится в пределах $\pm (0.1 \cdot V_{_{\mathit{HSM}}} + 0.1)$ мм/с.
- 7.5 Проверка рабочего диапазона частот и неравномерности частотной характеристики
- 7.5.1 Проверку рабочего диапазона частот и неравномерности частотной характеристики проводят в соответствии с 10.13 ГОСТ Р 8.669.

В зависимости от конфигурации датчика, на вибростенде воспроизводят СКЗ вибрации около 10 м/c^2 или 5 мм/c. Уровень воспроизводимых колебаний контролируют по регистратору эталонного канала.

При неизменной величине вибрации снимают показания выходного напряжения с регистратора испытуемого датчика на частотах 3, 5, 10, 20, 40, 80, 160, 315, 500, 700, 1000 Гц. Неравномерность ЧХ испытуемого датчика Y_i , %, определяют по формуле

$$Y_i = \left(\frac{U_{\text{\tiny obl}x.i}}{A_{\text{\tiny ox.}i}} \cdot \frac{A_{\text{\tiny ox.40}\Gamma_{ij}}}{U_{\text{\tiny obl}x.40}\Gamma_{ij}} - 1\right) \cdot 100, \tag{7}$$

где $U_{\text{вых.}i}$ - величина выходного сигнала датчика при *i*-том фиксированном значении частоты, мВ (мА);

 $U_{\rm вых.40\Gamma q}$ - величина выходного сигнала датчика на базовой частоте 40 Γ ц, мВ (мА).

 $A_{ex.i}$ - величина воздействующего виброускорения (виброскорости) при *i*-том фиксированном значении частоты, м/c² (мм/c);

 $A_{ex.40\Gamma y}$ - величина воздействующего виброускорения (виброскорости) на базовой частоте 40 Γ ц, м/с² (мм/с).

Примечание — Единица измерений выходного сигнала датчика зависит от его конфигурации и используемого выхода.

- 7.5.2 Датчик считают выдержавшим испытания, если неравномерность частотной характеристики относительно значения на базовой частоте 40 Гц находится в пределах:
 - $-\pm 5\%$ от 3 до 700 Гц включительно;
 - $-\pm20$ % свыше 700 до 1000 Гц.

7.6 Проверка ПО

7.6.1 При использовании выхода RS485 с помощью программного обеспечения с функцией MODBUS MASTER опросить регистры хранения данных с адресами 0x102, 0x101, 0x100. Определить номер версии ПО датчика как v2.v1.v0, где v2.v1.v0 — значения регистров 0x102, 0x101, 0x100 соответственно в формате int.

Датчик считают выдержавшим испытания, если соблюдается любое из условий:

- v2 больше «1»;
- (v2 равно «1») и (v1 больше «0»);
- (v2 равно «1») и (v1 равно или больше «0») и (v0 равно или больше «0»);

8 Оформление результатов поверки

- 8.1 При положительных результатах поверки оформляют свидетельство о поверке датчика по форме, установленной в действующих нормативных документах. Знак поверки наносится на свидетельство о поверке.
- 8.2 Датчик, не прошедший поверку, к применению не допускают. На него выдают извещение о непригодности по форме, установленной в действующих нормативных документах.

Приложение А (справочное) Перечень документов, на которые даны ссылки в тексте МП

Обозначение документа, на	Наименование документа, на который дана ссылка			
который дана ссылка	7, 3			
ГОСТ 12.2.007.0-75	ССБТ. Изделия электротехнические. Общие требования			
1001 12.2.007.0-73	безопасности			
ГОСТ Р 8.568-97	ГСИ. Аттестация испытательного оборудования.			
10011 0.300-97	Основные положения			
ГОСТ Р 8.669-2009	ГСИ. Виброметры с пьезоэлектрическими, индукционными и			
1 OC1 F 8.009-2009	вихретоковыми преобразователями. Методика поверки			
	ГСИ. Государственная поверочная схема для средств			
ГОСТ Р 8.800-2012	измерений виброперемещений, виброскорости и			
	виброускорения в диапазоне частот от $1 \cdot 10^{-1}$ до $2 \cdot 10^4$ Гц			
	Порядок проведения поверки средств измерений, требования к			
	знаку поверки и содержанию свидетельства о поверке. Введен			
	приказом Минпромторга России от 02 июля 2015г. № 1815			
ПОТ РМ-016-2001	Межотраслевые правила по охране труда (правила			
1101 FWI-010-2001	безопасности) при эксплуатации электроустановок			

Приложение Б (справочное) Перечень принятых сокращений

ВИП – виброизмерительный преобразователь

 $M\Pi$ – методика поверки;

ПК – персональный компьютер;

СИ – средство(а) измерений;

СКЗ – среднее квадратическое значение;

ЭД – эксплуатационная документация.