Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии имени Д.И. Менделеева» ФГУП «ВНИИМ им. Д.И. Менделеева»

Государственная система обеспечения единства измерений Система постоянного контроля выбросов загрязняющих веществ СПКВ

> Методика поверки МП 242-2128-2017

Санкт-Петербург 2017 г.

Настоящая методика поверки распространяется на систему постоянного контроля выбросов загрязняющих веществ СПКВ (далее – системы) и устанавливает методы и средства ее первичной поверки до ввода в эксплуатацию и после ремонта и периодической поверки в процессе эксплуатации.

Интервал между поверками – один год.

1 Операции поверки

1.1 При проведении поверки выполняют операции, указанные в таблице 1. Таблица 1

Наименование операции	Номер пункта	Обязательность проведения операции	
	методики поверки		
		при	при
		первичной	периодичес
	>	поверке	кой
			поверке
1 Внешний осмотр	6.1	Да	Да
2 Опробование	6.2		
2.1 Проверка общего функционирования	6.2.1	Да	Да
2.2 Подтверждение соответствия	6.2.2	Да	Да
программного обеспечения		400	
2.3. Проверка коэффициента	6.2.3	Да	Да
преобразования конвертера			
2.4. Проверка герметичности устройства	6.2.4	Да	Да
отбора и подготовки пробы			
3 Определение метрологических	6.3		
характеристик			
3.1 Определение основной погрешности	6.3.1	Да	Да
газоаналитических измерительных каналов			
3.2 Определение относительной	6.3.2	Да	Да
погрешности устройства отбора и			
подготовки пробы			
3.3 Определение суммарной погрешности	6.3.3	Да	Да
газоаналитических измерительных каналов			
в условиях эксплуатации			

- 1.2 Допускается проведение поверки отдельных измерительных каналов (ИК) в соответствии с заявлением владельца СИ, с обязательным указанием в свидетельстве о поверке информации об объеме проведенной поверки.
- 1.3 Если при проведении той или иной операции поверки ИК системы получен отрицательный результат, дальнейшая поверка данного канала прекращается.
- 1.4 Поверка газоаналитических ИК системы проводится комплектным методом на месте установки системы.

2 Средства поверки

2.1 При проведении поверки применяют средства, указанные в таблице 2.

Таблица 2

Номер пункта методики поверки	Наименование основного или вспомогательного средства поверки. Требования к средству поверки. Основные метрологические или технические характеристики.
4, 6	Прибор комбинированный для измерения температуры, относительной влажности воздуха и абсолютного давления Testo 622 (Регистрационный номер 53505-13): диапазон измерений температуры от 10 °C до 30 °C, пределы допускаемой абсолютной погрешности ±0,5 °C; диапазон измерений относительной влажности от 30 % до 80 %, пределы допускаемой абсолютной погрешности ±3 %; диапазон измерений абсолютного давления от 80 до 110 кПа, пределы допускаемой абсолютной погрешности ±0,5 кПа.
	Стандартные образцы состава - газовые смеси (ГС) в баллонах под давлением, приведенные в таблице Б.1 Приложения Б Поверочный нулевой газ (ПНГ) — азот газообразный в баллоне под давлением по ГОСТ 9293-74 или воздух по ТУ 6-21-5-82 Газоанализатор-компаратор с каналом измерений NO, диапазон измерений (0-1000) ррт, относительное СКО не более 3 % Ротаметр РМ-А-0,063 ГУЗ, ГОСТ 13045-81, верхняя граница диапазона измерений объемного расхода 0,063 м³/ч, кл. точности 4 Трубка фторопластовая по ТУ 6-05-2059-87, диаметр условного прохода 4 мм, толщина стенки 1 мм Вентиль точной регулировки ВТР-1 (или ВТР-1-М160), диапазон рабочего давления (0-150) кгс/см², диаметр условного прохода 3 мм

- 2.2 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.
- 2.3 Все средства поверки должны иметь действующие свидетельства о поверке, газовые смеси и ПНГ в баллонах под давлением действующие паспорта.

3 Требования безопасности

- 3.1 Концентрации вредных компонентов в воздухе рабочей зоны не должны превышать значений, приведенных в ГОСТ 12.1.005-88.
- 3.2 При работе с системами необходимо соблюдать «Правила технической эксплуатации электроустановок потребителей», утверждённые приказом Минэнерго РФ № 6 от13.01.2003 и «Правила по охране труда при эксплуатации электроустановок», утверждённые приказом Минтруда России № 328н от 24.07.2013, введённые в действие с 04.08.2014.
- 3.3 Требования техники безопасности при эксплуатации ГС в баллонах под давлением должны соответствовать Федеральным нормам и правилам в области промышленной безопасности "Правила промышленной безопасности опасных производственных объектов, на которых используется оборудование, работающее под избыточным давлением", утвержденным приказом Федеральной службы по экологическому, технологическому и атомному надзору от 25.03.2014 г. № 116.
 - 3.4 Сброс отработанных ГС должен осуществляться за пределы контейнера.
- 3.5 К поверке допускаются лица, изучившие эксплуатационную документацию на системы и прошедшие необходимый инструктаж.

4 Условия поверки

При проведении поверки следует соблюдать следующие условия:

-температура окружающей среды, °С

 $20\pm 5;$

- атмосферное давление, кПа

от 90,6 до 104,8;

- относительная влажность воздуха, %

до 80.

5 Подготовка к поверке

- 5.1. Перед проведением поверки должны быть выполнены следующие подготовительные работы:
- 5.1.1 Подготавливают систему к работе в соответствии с требованиями её эксплуатационной документации.
- 5.1.2 Подготавливают к работе средства поверки, указанные в таблице 2, в соответствии с требованиями их эксплуатационной документации.
 - 5.1.3 Проверяют наличие паспортов и сроки годности ГС.
- 5.1.4 Баллоны с ГС выдерживают в помещении, в котором проводят поверку, в течение не менее 24 ч.
- 5.1.5 При проведении поверки подсоединяют фторопластовую трубку с выхода вентиля точной регулировки, установленного на баллоне с ГС, через тройник на вход подачи газа газоанализатора (в соответствии с рисунком 1 Приложения В).

Расход Γ С должен быть на 10-20 % выше расхода, потребляемого газоанализатором. Контроль расхода на сбросе осуществляют при помощи ротаметра, подключенного к тройнику.

При поверке газоанализаторов в комплекте с устройством отбора и подготовки пробы подсоединяют фторопластовую трубку с выхода вентиля точной регулировки ко входу указанного устройства.

- 5.1.6 Подключают дублирующую панель оператора по месту расположения шкафа с измерительным оборудованием.
- 5.1.7 Перед началом поверки необходимо проверить герметичность линий отбора газовых проб в соответствии с РЭ на систему.

6 Проведение поверки

6.1 Внешний осмотр

- 6.1.1 При внешнем осмотре средств измерений и устройств, в т.ч. устройства отбора и подготовки пробы, входящих в состав системы, должно быть установлено отсутствие внешних повреждений и загрязнений, влияющих на работоспособность.
- 6.1.2 Комплектность и маркировка должны соответствовать указанной в Руководстве по эксплуатации.
 - 6.1.3 Для средств измерений, входящих в состав системы, должны быть установлены:
 - исправность органов управления, настройки и коррекции;
 - четкость всех надписей на лицевых панелях средств измерений;
 - четкость и контрастность цифровых дисплеев средств измерений.
- 6.1.4 Система считается выдержавшей внешний осмотр удовлетворительно, если она соответствует всем перечисленным выше требованиям.

6.2 Опробование

6.2.1 Проверка общего функционирования

Проверку общего функционирования средств измерений и устройств в составе системы проводят в процессе тестирования при их запуске в соответствии с РЭ на приборы.

Результаты проверки считают положительными, если:

-отсутствует информация об отказах элементов, входящих в состав системы;

- -на дисплее датчиков ИК индицируется текущая информация об измеряемых параметрах;
- -на дисплее панели оператора индицируется текущая информация об измеряемых параметрах.
 - 6.2.2 Подтверждение соответствия программного обеспечения
- 6.2.2.1 Подтверждение соответствия программного обеспечения (ПО) системы проводится путем проверки соответствия ПО, тому ПО, которое было зафиксировано (внесено в банк данных) при испытаниях в целях утверждения типа.
- 6.2.2.2 ПО идентифицируется посредством отображения на дисплее контроллера Segnetics 2Gi номера версии (идентификационного номера) и контрольной суммы по запросу пользователя через сервисное меню (пункт «Информация).
- 6.2.2.3 Результат подтверждения соответствия ПО считают положительным, если идентификационные данные соответствуют указанным в Описании типа системы (приложение к Свидетельству об утверждении типа).
 - 6.2.3 Проверка коэффициента преобразования конвертера

Проверку коэффициента преобразования конвертера проводится методом компарирования, который заключается в сравнении показаний газоанализатора-компаратора при последовательной подаче на него газовых смесей –ГС, приведенных в таблице Б.1 Приложения Б, № 2 NO/N₂ и ПГС № 2 NO₂/O₂/N₂ после ее прохождения через конвертер.

Подача Γ С $NO_2/O_2/N_2$ на конвертер проводится в соответствии с Руководством по эксплуатации конвертера модели JNOX.

В качестве газоанализатора-компаратора используется газоанализатор утвержденного типа с каналом измерений NO.

Число измерений – не менее 2-х.

Расчет коэффициента преобразования конвертера (K_{np} в %) проводят по формуле

$$K_{np} = \frac{C_{NO_{\partial}} \cdot A_{2}}{A_{1} \cdot C_{NO_{2} \cdot 2}} \cdot 100, \tag{6.1}$$

где A_1 — среднее арифметическое показаний газоанализатора-компаратора при подаче ГС NO/N₂, млн⁻¹;

 A_2 — среднее арифметическое показаний п газоанализатора-компаратора при подаче ГС с выхода конвертера (конвертированной ГС $NO_2/O_2/N_2$), млн⁻¹;

 $C_{NO\partial}$ – действительное значение массовой концентрации NO в ГС (по паспорту), млн⁻¹; $C_{NO2\partial}$ – действительное значение массовой концентрации NO₂ в ГС (по паспорту), млн⁻¹;

Результаты считаются положительными, если K_{np} составляет не менее 96 %.

6.2.4 Проверка герметичности устройства отбора и подготовки пробы

Проверка герметичности устройства отбора и подготовки пробы проводится для каждого газохода.

Проверка осуществляется подачей ПГС № 1 - ПНГ (азот газообразный в баллоне под давлением по ГОСТ 9293-74) и ПГС №2 (O_2/N_2) (таблица Б.1 Приложения Б) в газоанализатор кислорода, входящий в состав системы, через устройство отбора и подготовки пробы, в порт калибровки зонда (перед фильтром).

Предварительно подают указанные выше ПГС на вход газоанализатора.

Подачу ГС проводят в соответствии с пунктом 5.1.5 и рис.В.1 Приложения В.

Результаты считаются положительными, если изменение показаний не превышает:

0,3 % об. (при подаче ПГС № 1) и

5 % отн. (при подаче ПГС № 2).

6.3 Определение метрологических характеристик

6.3.1 Определение основной погрешности газоаналитических ИК

Определение основной погрешности проводят при поочередной подаче ГС для каждого определяемого компонента на вход газоанализатора в последовательности: №№ 1-2-3-2-1-3 и считывании показаний с дисплея газоанализатора и панели оператора системы.

Подачу ГС проводят в соответствии с пунктом 5.1.5. Номинальные значения содержания измеряемых компонентов в ГС приведены в таблице Б.1 Приложения Б.

6.3.1.1 Значения основной приведенной погрешности (γ , %) для диапазонов измерений, в которых нормированы пределы допускаемой основной приведенной погрешности (Таблица A.1, Приложение A), для всех компонентов кроме канала NO_x рассчитывают для каждой Γ С по формуле:

$$\gamma = \frac{C_i - C_o}{C} \cdot 100 \tag{6.2}$$

где:

 C_i – показания системы при подаче i-ой ПГС, мг/м³ (% об.), (показания панели оператора, для NO - показания дисплея газоанализатора);

 C_{∂} — действительное значение массовой концентрации (объемной доли) определяемого компонента в ПГС, мг/м³, (% об.);

 $C_{\rm B}$ - верхний предел диапазона измерений, мг/м³ (% об.).

6.3.1.2 Значения основной приведенной погрешности (γ_0 в %) в каждой точке для диапазонов измерений, в которых нормированы пределы допускаемой основной приведенной погрешности (таблица A.1 Приложения A), для канала NO_x (в пересчете на NO_2) рассчитывают по формуле

$$\gamma_0 = \frac{C_i \cdot K_n - C_{\delta}}{C_{\sigma}} \cdot 100 \tag{6.3}$$

где:

 C_i – показания системы при подаче i-ой ПГС NO /N₂, мг/м³, (показания панели оператора по каналу NO_x);

 K_n – коэффициент пересчета массовой концентрации NO_2 в массовую концентрацию NO_2 равный 0,65.

6.3.1.3 Значения основной относительной погрешности (δ , %) для диапазонов измерений, в которых нормированы пределы допускаемой основной относительной погрешности (Таблица A.1, Приложение A), для всех компонентов кроме канала NO_x рассчитывают для каждой ΓC по формуле:

$$\delta = \frac{C_i - C_o}{C_o} \cdot 100 \tag{6.4}$$

6.3.1.4 Значения основной относительной погрешности (δ , %) в каждой точке для диапазонов измерений, в которых нормированы пределы допускаемой основной относительной погрешности (таблица A.1 Приложения A), для канала NO_x (в пересчете на NO_2) рассчитывают по формуле

$$\delta = \frac{C_i \cdot K_n - C_o}{C_o} \cdot 100 \tag{6.5}$$

Результаты определения считают положительными, если:

- полученные значения основной погрешности не превышают значений, указанных в таблице А.1 Приложения А;
- расхождение показаний дисплея газоанализатора и показаний панели оператора (кроме канала NO_x) не превышает 0,2 долей от предела допускаемой основной погрешности.

6.3.2 Определение относительной погрешности устройства отбора и подготовки пробы

Определение относительной погрешности устройства отбора и подготовки пробы с использованием ΓC без увлажнения («сухих» ΓC) проводится на одном из газоходов (выборка по усмотрению поверителя).

Определение относительной погрешности устройства отбора и подготовки пробы (далее – устройства) проводят при подаче ΓC SO₂/CO/NO/N₂ (ПГС № 3), приведенной в таблице Б.1 Приложения Б, на вход устройства отбора пробы (в соответствии с РЭ на систему) и считывании показаний с дисплея газоанализатора.

Подачу ГС проводят в соответствии с пунктом 5.1.5 и рис.В.1 Приложения В.

Значение относительной погрешности устройства (δ_{np} , %) рассчитывают по формуле (для каждого компонента):

$$\delta_{np} = \frac{K \cdot C_{np} - C_{\delta}}{C_{\delta}} \cdot 100, \tag{6.6}$$

где C_{np} – показания газоанализатора при подаче ГС через устройство отбора пробы, мг/м³; C_{∂} – действительное значение массовой концентрации определяемого компонента в ГС (по паспорту), мг/м³,

К - коэффициент, рассчитанный по формуле

$$K = \frac{C_{\delta}}{C_{\delta}}, \qquad , \tag{6.7}$$

где C_3 – показания газоанализатора при подаче ГС на его вход, мг/м³.

Результаты определения считают положительными, если относительная погрешность устройства отбора и подготовки пробы не превышает пределов, равных $\pm 5\%$.

6.3.3 Определение суммарной погрешности газоаналитических ИК в условиях эксплуатации Суммарная погрешность газоаналитических ИК в условиях эксплуатации, приведенная в таблице А.2 Приложения А, включает основную и дополнительные погрешности газоанализатора и относительную погрешность пробоотборного устройства.

Результаты определения считают положительными, если

- значения основной погрешности, полученные по п. 6.3.1. настоящей методики, не превышают значений, указанных в таблице А.1 Приложения А;
- расхождение показаний дисплея газоанализатора и контроллера не превышает 0,2 долей от основной погрешности;
- значение относительной погрешность устройства отбора и подготовки пробы, полученное по п. 6.3.2. настоящей методики, не превышает пределов, равных $\pm 5~\%$.

7 Оформление результатов поверки

- 7.1 При проведении поверки системы составляется протокол результатов измерений, в котором указывается соответствие системы предъявляемым к ней требованиям. Форма протокола поверки приведена в Приложении Д.
- 7.2 Системы, удовлетворяющие требованиям методики поверки, признаются годными к применению.
- 7.3 Положительные результаты поверки оформляются свидетельством о поверке по форме, установленной приказом Минпромторга РФ № 1815 от 02.07.2015 г.
- 7.4 При отрицательных результатах поверки применение системы запрещается и выдается извещение о непригодности.
 - 7.5 Знак поверки наносится на свидетельство о поверке.

Приложение А

(рекомендуемое)

Таблица А.1 – Метрологические характеристики газоанализатора MGA 12

Определяемый	Диапазон измерений		Пределы допускаемой основной погрешности,		
компонент	массовой концентрации, мг/м ³	объемной доли, %	приведенной	относительной	
SO_2	от 0 до 100 включ. св.100 до 500	-	±8 -	- ±8	
NO	от 0 до 100 включ. св.100 до 1000		±8 -	- ±8	
СО	от 0 до 100 включ. св.100 до 1000	_	±5 . –	- ±5	
CH ₄	от 0 до 50 включ. св.50 до 500			- ±8	
O ₂	-	от 0 до 5 включ. св.5 до 25	±4 -	- ±4	
NO_x (в пересчете на NO_2) $^{I)}$	от 0 до 150 включ. св.150 до 1500) до 150 включ.		- ±8	

Примечание: 1) Определение NOx (в пересчете на NO₂) проводится при работе газоанализатора в комплекте с конвертером и считыванием показаний с панели оператора системы.

2) Пересчет значений объемной доли X в млн $^{-1}$ (ppm) в массовую концентрацию C,мг/м 3 , проводят по формуле: $C = X M/V_m$,

где М – молярная масса компонента, г/моль,

 V_m — молярный объем газа-разбавителя — азота или воздуха, равный 22,41, при условиях (0 °C и 101,3 кПа в соответствии с РД 52.04.186-89), дм³/моль.

Таблица А.2. – Диапазоны измерений и пределы допускаемой суммарной относительной (приведенной) погрешности измерительных каналов системы в условиях эксплуатации (в соответствии с Приказом Миниприроды России от № 425 от 07.12.2012 г.)

соответствии с	приказом минприро	ды России от № 425 от 07.12	.20121)
Определяем	Диапазоны	Пределы	Пределы допускаемой
ый	измерений	допускаемой	суммарной относительной
компонент	массовой	суммарной приведенной	погрешности , δ , %
	концентрации	погрешности,	
	определяемого	γ, %	
	компонента, мг/м ³		
Диоксид	от 0 до 50 включ.	±25	
серы	от о до зо включ.	±23	-
(SO_2)	св.50 до 500		$\pm (25-0.02\cdot C)^{1)}$
NO_x	от 0 до 80 включ.	±25	-
(в пересчете			
на NO ₂)	св.80 до 1500	-	±(25,6–0,008·C)
Оксид	от 0 до 40 включ.	±25	-
углерода (CO)	св.40 до 1000	-	±(25,6–0,016·C)
Метан	от 0 до 30 включ.	±25	-
(CH ₄)	св.30 до 500	±25	$\pm (25-0.02 \cdot \text{C}^{1})$
Примечание: 1)	С — измеренное знач	ение массовой концентрации	и, мг/м ³ .

Приложение Б

(обязательное)

Таблица Б.1. Перечень и метрологические характеристики ГС, используемых при поверке системы

Определяемый компонент	Диапазоны измерений массовой концентрации, мг/м ³ (или % объемной доли)	Номинальное значение объемной доли определяемого компонента в ГС, пределы допускаемого отклонения, мг/м³ (или % объемной доли) ПГС №1 ПГС №2 ПГС №3		Источник получения ГС (номер ГСО)	
Оксид углерода (CO)	от 0 до 100 включ. св.100 до 1000	ПНГ ¹⁾	100±10	900±100	ΓCO 10546-14 (CO/SO ₂ /NO/N ₂)
Диоксид серы (SO ₂)	от 0 до 100 включ. св.100 до 500	ПНГ	100±10	450±50	- « -
Оксид азота (NO)	от 0 до 100 включ. св.100 до 1000	ПНГ	100±10	900±100	- « -
CH ₄	от 0 до 50 включ. св.50 до 500	ПНГ	50±10	450±50	ΓCO 10540-14 (CH ₄ /N ₂)
Кислород (O ₂)	от 0 до 5 включ. св.5 до 25 (% об.)	ПНГ (азот)	(5,0±0,3) % об.	(24,0±0,7) % об.	ΓCO 10531-14 (O ₂ /N ₂)
Диоксид азота (NO ₂)	-	ПНГ (воздух)	160 ± 16	_	ΓCO 10546-2014 NO ₂ /O ₂ /N ₂ ²⁾

Примечания:

 $^{^{1)}}$ ПНГ - поверочный нулевой газ —воздух по ТУ 6-21-5-82 (кроме кислорода) или азот газообразный по ГОСТ 9293-74 (для всех компонентов, в т.ч. и для кислорода).

²⁾ Содержание кислорода в диапазоне от 2 до 5 % об.

³⁾ Пересчет значений объемной доли X в млн⁻¹ (ppm) в массовую концентрацию C, мг/м³, проводят по формуле: $C = X \cdot M/V_m$

где M – молярная масса компонента, г/моль, V_m – молярный объем газа-разбавителя - азота или воздуха, равный 22,4, при условиях 0 °C и 101,3 кПа (в соответствии с РД 52.04.186-89), дм³/моль.

Приложение В (рекомендуемое) Структурная схема поверки газоаналитических ИК

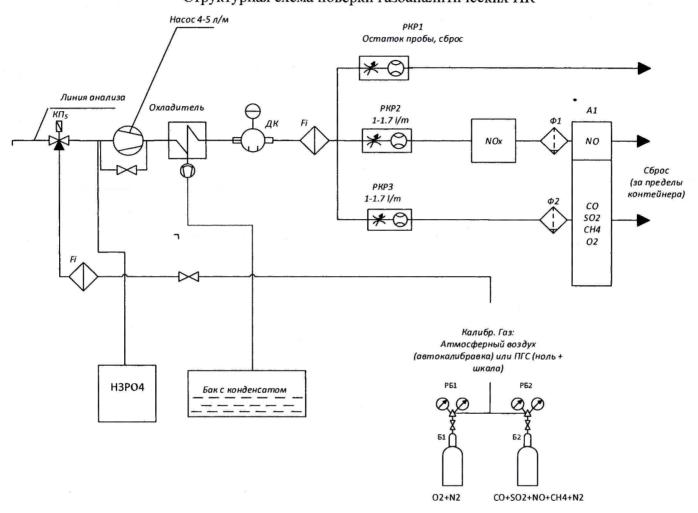


Рисунок В.1 –

схема подачи ГС из баллонов под давлением на вход газоанализатора

Приложение Д (рекомендуемое)

Протокол поверки

паименование Си:
Зав. №
Дата выпуска
Регистрационный номер:
Заказчик:
Серия и номер клейма предыдущей поверки:
Дата предыдущей поверки:
Методика поверки:
Основные средства поверки:
Условия поверки:
температура окружающей среды °C
относительная влажность воздуха %
атмосферное давление кПа
РЕЗУЛЬТАТЫ ПОВЕРКИ
1 Результаты внешнего осмотра
2 Результаты опробования
2.1 Проверка общего функционирования
2.2. Подтверждение соответствия программного обеспечения
2.3. Проверка коэффициента преобразования конвертера
2.4. Проверка герметичности устройства отбора и подготовки пробы
3 Результаты определение метрологических характеристик
3.1 Результаты определения основной погрешности газоаналитических ИК
3.2 Результаты определения относительной погрешности устройства отбора и подготовки пробы
3.3 Результаты определения суммарной погрешности газоаналитических ИК в условия эксплуатации
Заключение: на основании результатов первичной (или периодической) поверки система признан соответствующей установленным в описании типа метрологическим требованиям и пригодна применению.
Поверитель:
Дата поверки: