ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт расходометрии»

Государственный научный метрологический центр

ФГУП «ВНИИР»

УТВЕРЖДАЮ
Заместителя директора по развитию
А.С. Тайбинский
« 12 г. заваря 2017 г.

ИНСТРУКЦИЯ

Государственная система обеспечения единства измерений

КОМПЛЕКСЫ ИЗМЕРИТЕЛЬНЫЕ УЛЬТРАЗВУКОВЫЕ «ВЫМПЕЛ-500» ИСПОЛНЕНИЙ «01», «02»

Методика поверки МП 0568-13-2017

Начальник отдела ИИО-13

А.И. Горчев

Тел. отдела: 8(843) 272-01-12

РАЗРАБОТАНА

ФГУП «ВНИИР»

ООО «НПО «Вымпел»

УТВЕРЖДЕНА

ФГУП «ВНИИР»

Настоящая инструкция распространяется на комплексы измерительные ультразвуковые «Вымпел-500» исполнений «01», «02» (далее – КИУ «Вымпел-500») и устанавливает методику их первичной и периодической поверки.

Интервал между поверками – 4 года.

Инструкция разработана на основе ГОСТ 8.324-2002.

1 Операции поверки

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблина 1

	Номер Проведение операци			
No	Наименование операции	пункта	первичной	периодической
п.п.	•	методики	поверке	поверке
1	Внешний осмотр	6.1	+	+
2	Опробование	6.2	+	+
3	Определение погрешностей			
	измерительных каналов	6.3	+	+
4	Определение погрешности преобразования			
_	значения расхода газа в частотный сигнал	6.4	+	+
5	Определение погрешности измерения			
	расхода и объёма газа			
5.1	Проливным методом на поверочной	6.5	+	+
	установке			,
5.2	Поверка имитационным методом	6.6	+	+
5.3	Проливным методом на месте			
5.5	эксплуатации	6.7	-	+
	Определение погрешности измерения			
6	расхода и объема газа, приведенных к			
	стандартным условиям	6.8	+	+

Примечания:

- 1. Первичная поверка имитационным методом КИУ «Вымпел-500» исполнения «01» проводится на воздушной среде (п. 6.6.1), периодическая поверка на КИУ, снятом с трубопровода (п. 6.6.1), либо без снятия КИУ с трубопровода (п. 6.6.2).
- 2. Первичная поверка КИУ «Вымпел-500» исполнения «02» (с двумя либо четырьмя измерительными каналами), предназначенных для врезки в существующий трубопровод, проводится имитационным методом с помощью стенда акустического ВМПЛ2.778.001 (п.6.6.3), периодическая поверка любым имитационным методом.
- 1.2 При определении погрешности измерения расхода и объема газа КИУ «Вымпел-500» проверяются на соответствие метрологических характеристик требованиям, указанным в таблице 2.

таолица 2			
Характеристика	Значение характеристики		
Максимальный рабочий расход газа Q_{max}^{-1} , M^3/Ψ от 234 до 110800			
Минимальный рабочий расход газа Q _{min} 1), м ³ /ч	от 5 до 1380		
Границы интервала относительной погрешности измерений расхода Q _p в рабочих условиях, при доверительной	Диапазон расходов		
вероятности 0,95 (исполнение «01»), %	$Q_{\min} \leq Q_p \leq$	0,01Q _{min} ≤	
	$0.01Q_{\text{max}} \pm 0.7^{2.3}$	$Q_{p} \leq Q_{max}$ $\pm 0.5^{2,3)}$	
- для 2 измерительных каналов	$\pm 1,0^{4,5)}$ $\pm 1,5^{6)}$	$\pm 0,7^{4,5)}$ $\pm 1,0^{6)}$	
	$\pm 2,0^{7}$	±1,57)	
	±0,5 ^{2,3)} ±0,7 ^{4,5)}	$\pm 0,4^{2,3)}$ $\pm 0,6^{4,5)}$	
- для 4 измерительных каналов	±1,0 ⁶⁾	±0,86)	
	±1,5 ⁷⁾	±1,1 ⁷⁾	
- для 8 измерительных каналов	±0,6 ^{2,3)} ±0,8 ^{4,5,6)}	$\pm 0,4^{2,3}$ $\pm 0,6^{4,5,6}$	
	±1,17)	±0,8 ⁷⁾	
Границы интервала относительной погрешности измерений	Диапазон расходов		
расхода Q _p в рабочих условиях, при доверительной	$Q_{min} \le Q_p \le$	0,01Q _{min} ≤	
вероятности 0,95 (исполнение «02»), %	0,01Q _{max}	$Q_p \le Q_{max}$	
	±0,7 ^{4,8)}	±0,5 ^{4,8)}	
	±1.09)	$\pm 0.7^{9}$	
	±2,010)	±1,5 ¹⁰⁾	
	±2,5 ¹¹⁾	±2,0 ¹¹⁾	

¹⁾ Q в соответствии с руководством по эксплуатации в зависимости от виутреннего диаметра рабочего трубопровода.

Достижение заявленных метрологических характеристик обеспечняяется наличием входных и выходных прямых участков следующих длин: входные -10DN, 10DN+ФП, 20DN, 5DN+ФП+полнопроходной участок стыковой трубы не менее 3DN, выходной - 3DN, 5DN. Варианты исполнения по условиям применения.

Допускается сопряжение корпуса первичного преобразователя с измерительным трубопроводом путем применения конических переходов в соответствии с требованиями ГОСТ 8.611-2013. Конические переходы могут быть выполнены непосредственно в корпусе первичного преобразователя.

¹ При калибровке (поверке) на природном газе проливным методом на эталонной установке с относительной погрешностью не более ± 0,23 % и использованием корректирующих коэффициентов.

³⁾При калибровке (поверке) на воздухе проливным методом на эталонной установке с относительной погрешностью не более ± 0,23 % и использованием корректирующих коэффициентов для КИУ, предназначенных для эксплуатации при избыточном давлении измеряемой среды до 1.2 МПа включительно.

⁴⁾При калибровке (поверке) на природном газе (воздухе) проливным методом на эталонной установке с относительной погрешностью не более ± 0,30 % и использованием корректирующих коэффициентов.

⁵⁾При периодической поверке имитационным методом при условии предыдущей поверки проливным методом по пунктам 1), 2) или 3).

⁶⁾При первичной имитационной поверке для DN от 200 включительно и выше.

⁷⁾При первичной имитационной поверке для DN до 200.

⁸⁾При периодической поверке на месте эксплуатации по эталону сличения, нысющему относительную погрешность не более \pm 0,3 %.

 ⁹⁾При периодической поверке на месте эксплуатации по эталону сличения, имеющему относительную погрешность не более ± 0,5 %.

¹⁰⁾⁴⁻х канальное исполнение КИУ с врезкой в существующий трубопровод; первичная и периодическая поверка обеспечивается имитационным методом.

¹¹⁾²⁻х канальное исполнение КИУ с врезкой в существующий трубопровод; первичиая и периодическая поверка обеспечивается имитационным методом.

Допускается ограничивать верхиюю границу диапазона измерений объёмного расхода газа 0,7Qmax при проливном методе поверки преобразователей расхода газа с условиыми диаметрами DN200 и выше.

2 Средства поверки

- 2.1 При проведении поверки применяют следующие средства измерений (СИ):
- государственный первичный эталон единиц объемного и массового расходов газа ГЭТ 118-2013. СКО 0,05%, НСП 0,04%. Диапазон воспроизведения объемного расхода газа от 0,003 до 16 000 м³/ч.
- национальные эталоны в рамках соглашения СІРМ MRA (установка поверочная расходоизмерительная, поверочная среда: природный газ, диапазон задаваемого объемного расхода должен соответствовать рабочему диапазону поверяемого счетчика, с пределом основной относительной погрешности ±0,23% (или средним квадратическим отклонением результатов измерений не более 0,05% при 11 независимых измерениях, и неисключенной систематической погрешности не превышающей 0,1%));
- рабочий эталон 1-го разряда по ГОСТ Р 8.618-2014 (установка поверочная расходоизмерительная, поверочная среда: воздух или природный газ, диапазон задаваемого объемного расхода должен соответствовать рабочему диапазону поверяемого счетчика, с пределом основной относительной погрешности ±0,3%);
- калибратор давления с комплектом эталонных датчиков, предел допускаемой основной погрешности измерения ±0,025% ВПИ;
- частотомер электронно-счётный Ч3-85/3 (рег. № 32359-06), погрешность опорного генератора $\pm 1 \cdot 10^{-7}$;
- калибратор температуры КТ-1 (рег.№ 29228-11), задаваемые температуры от минус 50 до +140°C, пределы допускаемой абсолютной погрешности воспроизведения температуры не более ±(0,05+0,0005·|t|) °C.
- программный комплекс «Расходомер ИСО», свидетельство об аттестации 61013-15.
- 2.2 Средства поверки должны иметь действующие свидетельства о поверке (сертификат о калибровке).
- 2.3 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

3 Требования безопасности

- 3.1 При проведении поверки должны выполняться:
- правила безопасности при эксплуатации используемых средств поверки, приведенные в их эксплуатационной документации;
 - правила безопасности, указанные в эксплуатационной документации.
- 3.2 Все работы по монтажу и демонтажу поверяемых КИУ «Вымпел-500» выполняют при неработающей поверочной установке.

4 Условия поверки

4.1 Для установок с критическими соплами в качестве поверочного газа используется воздух. Для установок со счетчиками объемного расхода – природный газ или воздух.

Рабочее давление на поверяемой установке должно быть не более допустимого рабочего давления поверяемого КИУ «Вымпел-500» и определяться технологическими возможностями поверочной установки.

4.2. При проведении поверки на поверочных установках на воздухе соблюдают нормальные условия по ГОСТ 8.395-80:

- температура измеряемой среды, °С

 $20\pm 5;$

- температура окружающего воздуха, °С

20±5;

- относительная влажность окружающего воздуха, %

от 30 до 80;

- атмосферное давление, кПа

от 84 до 106,7;

- изменение температуры измеряемой среды

за время поверки, °С, не более

2

Поверку имитационным методом на месте эксплуатации, а также проливным методом на установках на природном газе и проливным методом на объекте допускается проводить в текущих условиях окружающей и измеряемой среды, соответствующим рабочим диапазонам КИУ «Вымпел-500» и/или поверочной установки.

5 Подготовка к поверке

- 5.1 На поверку должны быть представлены:
- КИУ «Вымпел-500»;
- руководство по эксплуатации ВМПЛ1.456.014 РЭ;
- методика поверки.

Перед проведением поверки необходимо ознакомиться с элементами управления, режимами работы, программированием и методикой измерений.

Для проведения поверки на природном газе высокого давления должен быть представлен пакет документов, подтверждающих возможность установки КИУ на опасных производственных объектах.

Выдержка КИУ «Вымпел-500» перед поверкой после включения питания должна быть не менее 30 минут.

После установки КИУ «Вымпел-500» на поверочной установке проверяют герметичность мест подсоединения счетчика к поверочной установке.

5.2. Перед проведением поверки в поверяемый КИУ «Вымпел-500» вводятся параметры в соответствии с приложением А, включая параметры поверочной среды.

6 Проведение поверки

6.1 Внешний осмотр

При внешнем осмотре проверяют:

- соответствие внешнего вида КИУ «Вымпел-500» и составных частей требованиям эксплуатационной документации, комплектность;
- механические повреждения, влияющие на работоспособность КИУ «Вымпел-500», должны отсутствовать;
- резьбы на соединительных элементах (разъемах) не должны иметь сорванных ниток и забоин.
- наличие маркировок на составных частях и соответствие сведений, указанных на них, параметрам, указанным в формуляре;
- наличие мест пломбирования на элементах, предназначенных для пломбирования КИУ «Вымпел-500».

6.2 Опробование

- 6.2.1 В режиме измерений наблюдают за показаниями давления, температуры, расхода и объёма газа, даты и текущего времени по индикатору КИУ «Вымпел-500» либо дисплею компьютера, с установленным на нем программным обеспечением «PoverkaUS». Проверяют конфигурационные параметры на соответствие их формуляру на КИУ или паспорту узла учета газа.
 - 6.2.2 Опробование проводится при тех же условиях, что и поверка расходомера.
- 6.2.3 Результаты проверки работоспособности расходомера считают положительными, если индикация ошибок на встроенном индикаторе КИУ либо на установленном программном обеспечении «PoverkaUS» отсутствует.

- 6.2.4 Процедура подтверждения соответствия программного обеспечения КИУ включает в себя проверку:
 - идентификационного наименования программного обеспечения;
 - номера версии программного обеспечения;
 - цифрового идентификатора (контрольной суммы) программного обеспечения.

При включении КИУ на встроенный индикатор КИУ выводится наименование, номер версии и контрольная сумма программного обеспечения. Идентификационные данные КИУ так же можно контролировать с помощью программного обеспечения «PoverkaUS».

Результат проверки соответствия программного обеспечения считается положительным, если полученные в ходе проверки данные соответствуют данным, указанным в описании типа КИУ.

6.3 Определение погрешностей измерительных каналов

- 6.3.1 Перед операцией поверки необходимо предварительно произвести коррекцию нулевого сигнала по каналу давления:
- 1) подается на соответствующий вход прибора давление, равное верхнему пределу измерения соответствующего канала прибора;
 - прибор выдерживается при заданном давлении в течение двух минут;
- давление сбрасывается до атмосферного, выдерживается три минуты и далее показания данного канала прибора корректируются в соответствии с эксплуатационной документацией.

После корректировки не допускается изменять положение датчика.

- 6.3.2 Перед операцией поверки необходимо предварительно произвести коррекцию нулевого сигнала по каналу измерения расхода с помощью программы «PoverkaUS». При этом преобразователь расхода необходимо заглушить с двух сторон.
- 6.3.3 Определение относительной погрешности измерения по каналу абсолютного (избыточного) давления, абсолютной погрешности по каналу температуры, относительной погрешности вычисления расхода, производится по следующим пяти комбинациям параметров, приведенным в таблице 3 с помощью калибраторов давления и температуры, а также при помощи программы «PoverkaUS» компьютера.

Таблица 3

гаоли	ца э		
№ сомбинаций	Объемный расход в рабочих условиях (Q) относительно диапазона измерения (Q _{min} Q _{max})	Абсолютное (избыточное) давление (Р), в долях, относительно диапазона измерения (Р _{min} Р _{max})	Температура измеряемой среды (t) относительно диапазона измерения (t _{mint_{max})}
_ 1	Qmin	P _{min}	t _{min}
2	0,25Q _{max}	$0.3P_{\text{max}} + 0.7P_{\text{min}}$	$0.3t_{\text{max}} + 0.7t_{\text{min}}$
3	0,5Q _{max}	$0.5P_{\text{max}} + 0.5P_{\text{min}}$	$0.5t_{\text{max}} + 0.5t_{\text{min}}$
4	0,75Q _{max}	$0.7P_{\text{max}} + 0.3P_{\text{min}}$	$0.7t_{\text{max}} + 0.3t_{\text{min}}$
5	Q _{max}	P _{max}	t _{max}

Примечания:

- 1. Допускается задавать иные значения давления, расхода и температуры, достаточно равномерно распределенные в диапазоне измерения соответствующих каналов приборов.
- 2. Диапазоны, указанные в таблице 3, относятся к паспортным данным, а в случаях известных условий эксплуатации конкретного прибора, относятся к условиям эксплуатации. Формула для расчетного значения расхода приведена в эксплуатационной документации.
- 3. Коэффициент сжимаемости газа определяется расчётным путём по ГОСТ 30319.2-2015 либо ГОСТ Р 8.662-2009 (AGA8). Коэффициент сжимаемости воздуха определяется расчетным путем по ГСССД МР112-03. Коэффициент сжимаемости влажного нефтяного газа (ПНГ) определяется расчетным путем по ГСССД МР113-03. Коэффициент сжимаемости умеренно-сжатых газовых смесей определяется расчетным путем по ГСССД МР118-05.

На вход датчика измерения температуры с помощью калибратора температуры задать значения температуры.

На вход датчика абсолютного (избыточного) давления с помощью эталонного задатчика давления задать значения давления.

Для задания объемного расхода задать с помощью компьютера в режиме эмуляции необходимое значение расхода в соответствии с эксплуатационной документацией.

При каждом значении объемного расхода в рабочих условиях, абсолютного (избыточного) давления, температуры, измеренные значения объемного расхода в стандартных условиях, абсолютного (избыточного) давления, температуры фиксируются по индикатору прибора или компьютера.

Относительную погрешность канала абсолютного (избыточного) давления для каждого заданного значения рассчитывают в процентах по формуле:

$$\delta_P = [(P_{u_{3M}} - P_{3a\partial})/P_{3a\partial}] \times 100, \tag{1}$$

где δ_P – приведенная погрешность, %;

 P_{3ad} — значение величины, заданное с помощью эталонного средства;

 $P_{u_{3M}}$ – осредненное по десяти замерам значение измеренной величины;

Полученные по формуле (1) значения относительной погрешности не должны превышать границ (в %), определяемых выражением:

$$\delta_{\text{MAKC}} = \pm (0,01+0,1(P_{\text{max}}/P_{3ad})),$$
 (2)

Абсолютную погрешность по каналу измерения температуры (преобразования сопротивления термопреобразователя в соответствующие значения температуры) для каждого заданного значения рассчитывают по формуле:

$$\Delta_{l} = (t_{u_{3M}} - t_{3ad}), \tag{3}$$

где Δ_t – абсолютная погрешность, °C;

 t_{3a0} — значение температуры, заданное с помощью образцового средства;

 $t_{uзм}$ — осредненное по десяти замерам значение измеренной величины.

Полученные по формуле (3) значения абсолютной погрешности не должны превышать границ, определяемых выражением:

$$\Delta_{t,Marc} = \pm \sqrt{(0,1+0,0017|t_{300}|)^2 + \Delta^2}$$
, (4)

где Δ – погрешность преобразования значения сопротивления в значение температуры, равная ± 0.05 °C;

Относительную погрешность вычисления расхода контролируемой среды для каждого заданного значения рассчитывают в процентах по формуле:

$$\delta_Q = [(Q_{\theta \omega \nu} - Q_{pac\nu})/Q_{pac\nu}] \times 100, \tag{5}$$

где δ_{O} – относительная погрешность вычисления расхода, %;

 Q_{pacu} — расчетное значение величины расхода при действительных значениях абсолютного давления, температуры и заданного значения расхода в рабочих условиях. Вычисление допускается производить по 10 замерам с помощью аттестованных в установленном порядке программных комплексов;

 $Q_{\rm 6blq}$ — вычисленное КИУ «Вымпел-500» значение величины расхода или количества контролируемой среды, считанное в том же цикле измерения или осредненное по 10 замерам мгновенных значений измеренной величины.

Полученные по формуле (5) значения относительной погрешности вычисления расхода не должны превышать $\pm 0.01\%$.

6.4 Определение погрешности преобразования значения расхода газа в частотный сигнал

Погрешность определяют при пяти значениях расхода в рабочих условиях Q_{min} , $0,25Q_{max}$, $0,5Q_{max}$, $0,75Q_{max}$, Q_{max} .

К частотному выходу электронного блока подключают частотомер.

С помощью программы «PoverkaUS» вводят в режиме эмуляции значение расхода в КИУ «Вымпел-500», считывают значение расхода в рабочих условиях $Q_{u_{3M}}$ по индикатору КИУ «Вымпел-500» или дисплею компьютера, значение частоты $F_{u_{3M}}$ - по показанию частотомера.

Определяют расчётное значение частоты:

$$F_{pacy} = F_{max} \cdot Q_{u_{3M}} / Q_{max} \tag{6}$$

где $F_{\text{мах}}, Q_{\text{мах}}$ - максимальные значения частоты и расхода.

Вычисляют относительную погрешность КИУ «Вымпел-500» по частотному выходу в каждой точке расхода в процентах по формуле:

$$\delta_F = [(F_{usm} - F_{pacu})/F_{pacu}] \times 100, \tag{7}$$

Результаты поверки считаются положительными, если величина δ_F не превышает $\pm 0.01\%$.

6.5 Определение погрешности измерения расхода и объёма газа на поверочной установке

Допускается проводить поверку и выдавать свидетельство о поверке для ограниченного диапазона объемного расхода газа на основании письменного заявления владельца КИУ.

Допускается ограничивать верхнюю границу диапазона измерений объёмного расхода газа $0.7\,Q_{\rm max}$ при проливном методе поверки КИУ с условными диаметрами первичного преобразователя расхода DN200 и выше.

Рабочая среда – природный газ либо воздух.

Заданное значение расхода газа $Q_{^{9ma\pi}}$ в рабочих условиях в поверяемом КИУ вычисляется по формуле (8) для установок с критическими соплами либо определяется в соответствии с эксплуатационной документацией на поверочную установку другого типа:

$$Q_{\text{этал}} = \left(1 - \frac{\Delta P}{P}\right) \cdot \sqrt{\frac{273,15 + t}{293,15}} \cdot Q_{20} \cdot \frac{1}{k_{\varphi}}$$
 (8)

где ΔP — перепад давления между поверяемым КИУ «Вымпел-500» и критическим соплом, Па;

P – абсолютное давление в КИУ «Вымпел-500», Па;

t – температура измеряемой среды, °C;

 k_{φ} – поправочный коэффициент на влажность воздуха;

 Q_{20} — объемный расход через критическое сопло при 20 °C (из сертификата калибровки критического сопла), м³/ч.

На каждом значении расхода считают не менее 100 значений показаний объемного расхода по поверяемому КИУ «Вымпел-500» и вычисляют среднее арифметическое значение $Q_{\rm изм}$.

Определяют относительную погрешность КИУ «Вымпел-500» δ_{Qp} , в процентах, по формуле:

$$\delta_{Qp} = \frac{Q_{\text{изм}} - Q_{\text{этал}}}{Q_{\text{этал}}} \cdot 100\%. \tag{9}$$

Примечание: допускается введение корректировочных коэффициентов.

Величина δ_{Qp} не должна превышать значений, указанных в таблице 2.

6.6 Поверка имитационным методом

Применение имитационного способа возможно, как на снятом с трубопровода КИУ, так и без его снятия с измерительной линии, а также с помощью стенда акустического ВМПЛ2.778.001.

6.6.1 При проведении имитационной поверки снятого с трубопровода КИУ его помещают в отдельное помещение, герметично закрывают со стороны фланцев и в проточную часть закачивают при атмосферном давлении неагрессивный газ известного состава, например, воздух. Выдерживают в течение 3 часов при стабильной температуре окружающей среды и атмосферном давлении.

Так же КИУ не должен подвергаться воздействию солнечных лучей и должен находиться на достаточном удалении от источников тепла, так как эти факторы могут привести к неравномерному нагреву корпуса расходомера и возникновению внутри него конвекционных потоков.

С помощью программы «PoverkaUS» проводят измерения скорости звука, температуры и скорости потока газа. Для каждого акустического канала измерения скорости звука и потока газа выполняют не менее 3 раз в течение 5 мин с осреднением полученных результатов.

Результаты измерений скорости звука сравнивают с расчётной скоростью звука, вычисляемой с помощью сертифицированного программного обеспечения согласно ГСССД МР 112-03 (для воздуха).

Результаты имитационной поверки считаются положительными, если:

- Измеренные значения скорости потока газа по каждому измерительному каналу за 5 мин не превышают по абсолютной величине:
- $0,006\,$ м/с для КИУ с пределами допускаемой относительной погрешности при измерении объемного расхода $\delta \leq \pm 0,5\%$;
- 0,012 м/с для КИУ с пределами допускаемой относительной погрешности при измерении объемного расхода $\pm 0,5\% < \delta \leq \pm 0,7\%$;
- 0,024 м/с для КИУ с пределами допускаемой относительной погрешности при измерении объемного расхода $\pm 0,7\% < \delta$.
- Отклонения расчетной скорости звука в газе от измеренных скоростей звука по каждому измерительному каналу за 5 мин не превышают 0,3%.
- 3) Взаимные абсолютные отклонения измеренных скоростей звука по измерительным каналам за 5 мин не превышают ± 0.3 м/с.

6.6.2 Проведение имитационной поверки расходомера без снятия его с измерительной линии возможно только в том случае, если отрезок трубопровода с расходомером может быть перекрыт с обеих сторон от расходомера, чтобы полностью исключить внутри него течение газа.

Поверку проводят при рабочем давлении и стабильной температуре окружающей среды. Расходомер и участки трубопровода до запорной арматуры (но не менее 10DN) должны быть закрыты от попадания солнечных лучей, осадков и источников тепла.

С помощью программы «PoverkaUS» проводят измерения скорости звука и скорости потока газа. Эти измерения проводят не менее 3 раз в течение 5 мин с осреднением полученных результатов.

Измеренная скорость звука сравнивается со скоростью звука, определяемой с помощью сертифицированного программного обеспечения в соответствии с положениями ГОСТ 30319.2-2015, ГОСТ Р 8.662-2009, ГСССД МР 112-03, ГСССД МР 113-03 либо ГСССД МР 118-05.

Результаты имитационной поверки считаются положительными, если:

- 1) Измеренные значения скорости потока газа по каждому измерительному каналу за 5 мин не превышают по абсолютной величине:
- $0,006\,$ м/с для КИУ с пределами допускаемой относительной погрешности при измерении объемного расхода $\delta \leq \pm 0,5\%$;
- $0,012\,$ м/с для КИУ с пределами допускаемой относительной погрешности при измерении объемного расхода $\pm 0,5\% < \delta \leq \pm 0,7\%$;
- 0,024 м/с для КИУ с пределами допускаемой относительной погрешности при измерении объемного расхода $\pm 0,7\% < \delta$.
- Отклонения расчетной скорости звука в газе от измеренных скоростей звука по каждому измерительному каналу за 5 мин не превышают 0,3%.
- 3) Взаимные абсолютные отклонения измеренных скоростей звука по измерительным каналам за 5 мин не превышают $\pm 0,3$ м/с.
- 6.6.3 Поверка имитационным методом с помощью стенда акустического ВМПЛ2.778.001 проводится при атмосферном давлении на воздухе. Конструкция стенда обеспечивает герметизацию измерительной камеры от влияния движения окружающего воздуха.

Стенд акустический с установленными на нем датчиками пьезоэлектрическими, датчиком давления и датчиком температуры выдерживают в течение 3 часов при стабильной температуре окружающей среды и атмосферном давлении. Стенд не должен подвергаться воздействию солнечных лучей и должен находиться на достаточном удалении от источников тепла, так как эти факторы могут привести к неравномерному нагреву корпуса стенда и возникновению внутри него конвекционных потоков.

С помощью программы «PoverkaUS» вводят в настройки КИУ конфигурационные параметры, указанные в паспорте на стенд акустический ВМПЛ2.778.001, и проводят измерения скорости звука и скорости потока газа. Эти измерения проводят не менее 3 раз в течение 5 мин с осреднением полученных результатов.

Измеренная скорость звука сравнивается со скоростью звука, определяемой с помощью сертифицированного программного обеспечения в соответствии с положениями ГСССД MP 112-03.

Результаты имитационной поверки считаются положительными, если:

- Измеренные значения скорости потока газа по каждому измерительному каналу за 5 мин не превышают по абсолютной величине 0,024 м/с.
- Отклонения расчетной скорости звука в газе от измеренных скоростей звука по каждому измерительному каналу за 5 мин не превышают 0,3%.

3) Взаимные абсолютные отклонения измеренных скоростей звука по измерительным каналам за 5 мин не превышают ± 0.3 м/с.

6.7 Определение погрешности измерения расхода и объёма газа проливным методом на объекте

Для КИУ «Вымпел-500» исполнения «02» допускается проведение поверки проливным методом на месте эксплуатации путем сличения результатов измерений расхода с результатами измерений этой же величины, полученных с помощью СИ, имеющего относительную погрешность не более \pm 0,3% либо \pm 0,5% (таблица 2).

В качестве такого СИ можно использовать КИУ «Вымпел-500», имеющий границы относительной погрешности не более \pm 0,3% либо \pm 0,5% в условиях работы поверяемого расходомера и имеющий действующее свидетельство о поверке (далее – эталон-переносчик).

Для поверки путём сличения результатов измерений расхода эталон-переносчик монтируется последовательно с поверяемым КИУ выше либо ниже по потоку. Реализация схемы последовательного включения поверяемого и эталонного приборов определяется техническими возможностями объектовой площадки. Достижение заявленных метрологических характеристик обеспечивается наличием у поверяемого и эталонного приборов входных (не менее 20DN) и выходных (не менее 5DN) прямых участков.

При практической реализации схемы поверки методом сличения результатов измерений расхода на действующем узле учёта необходимо предусмотреть возможность измерения температуры и давления газа в выходных сечениях поверяемого КИУ и эталона-переносчика.

Определение погрешности измерения расхода и объема газа проливным методом на месте эксплуатации с помощью эталона-переносчика проводят путем сличения значений расходов, приведенных к условиям поверяемого КИУ, измеренных эталоном-переносчиком и поверяемым КИУ. Значения расходов, при которых проводится поверка, определяются техническими возможностями объектовой площадки и/или верхним пределом измерения расхода эталоном-переносчиком (но не менее 3 значений).

При каждом значении расхода газа продолжительность измерений должна быть не менее 5 минут. Количество измерений на каждом значении расхода должно быть не менее 3. Перед каждым измерением установленный расход выдерживают в течение 5 мин для исключения возможных пульсаций, вызванных регулировкой расхода.

Поверку проводят в следующей последовательности:

- 1) Устанавливают необходимое значение расхода через поверяемый КИУ;
- При каждом заданном значении расхода осуществляют регистрацию следующих параметров:
- значение объемов газа при рабочих условиях по показаниям поверяемого КИУ и эталона-переносчика;
- абсолютное давление газа по показаниям средств измерений измерительных систем поверяемого КИУ и эталона-переносчика;
 - температуру газа в поверяемом КИУ и эталоне-переносчике;
 - время измерения.
- 3) Значение объема, измеренного эталоном-переносчиком, приводят к условиям измерений поверяемого КИУ по формуле:

$$V_{9}^{\star} = V_{9} \frac{p_{9}}{p} \cdot \frac{Z}{Z_{9}} \cdot \frac{T}{T_{9}} \tag{10}$$

где V_3^* — объем газа в рабочих условиях, измеренный эталоном-переносчиком и приведенный к условиям измерений поверяемого КИУ, м³;

 V_3 – объем газа при рабочих условиях, измеренный эталоном-переносчиком, м³;

 p_3 – абсолютное давление газа в эталоне-переносчике, МПа;

р – абсолютное давление в поверяемом КИУ, МПа;

Т₃ – температура газа в эталоне-переносчике, К;

Т – температура газа в поверяемом КИУ, К;

- Z_{3} фактор сжимаемости газа, рассчитанный с учетом значений абсолютного давления и температуры газа в эталоне-переносчике;
- Z фактор сжимаемости газа, рассчитанный с учетом значений абсолютного давления и температуры в поверяемом КИУ.
 - 4) Рассчитывают относительную погрешность измерений по формуле:

$$E = \frac{V - V_3^*}{V_3^*} \cdot 100\%,\tag{11}$$

где V_3^* — объем газа в рабочих условиях, измеренный эталоном-переносчиком и приведенный к условиям измерений поверяемого КИУ, м³;

V – объем газа, измеренный поверяемым КИУ, м³;

5) Вычисляют среднее значение систематической составляющей погрешности измерения для n проведенных измерений на данном значении расхода по формуле:

$$\bar{E} = \frac{\sum_{j}^{n} E_{j}}{n},\tag{12}$$

где E_j — значение относительной систематической погрешности измерения при ј измерении, %;

n — число измерений.

6) Вычисляют относительную расширенную неопределенность типа A по формуле:

$$U' = k \sqrt{\frac{\sum_{j=1}^{n} (E_j - \bar{E})^2}{(n-1)}},$$
(13)

где k — коэффициент Стьюдента для доверительной вероятности 95% и степени свободы v = n - 1.

Значения коэффициента Стьюдента для доверительной вероятности 95% в зависимости от степени свободы приведены в таблице 4.

Таблица 4

ν	2	3	4	5
k	4,302	3,182	2,776	2,570

 Рассчитывают неопределенность измерений расхода поверяемого расходомера при установленном значении расхода по формуле:

$$U'_{\text{DOB}} = \sqrt{U_3'^2 + U'^2},\tag{14}$$

где U_3' — расширенная относительная неопределенность или относительная погрешность эталона-переносчика (равна ±0,3% либо ±0,5%).

Приведенные операции проводят для всех устанавливаемых значений расхода. Величина ($|\bar{E}| + U'_{\text{пов}}$) не должна превышать значений, указанных в таблице 2.

6.8 Определение погрешности измерения расхода и объема газа, приведенных к стандартным условиям

Погрешность измерения расхода газа, приведенного к стандартным условиям, без учета погрешности определения коэффициента сжимаемости и факторов, определяющих физико-химические свойства газа, при рабочем давлении не менее $0.3P_{\text{max}}$, вычисляется по формуле:

$$\delta Q_{CT} = \pm \sqrt{\delta Q_P^2 + \delta_P^2 + \delta_t^2 + \delta_e^2}, \qquad (15)$$

где δQ_{CT} - относительная погрешность измерения расхода и объема газа, приведенных к стандартным условиям;

 δQ_{p} - предел допускаемой относительной погрешности измерения расхода и объема газа в рабочих условиях;

 δ_{p} - предел допускаемой относительной погрешности измерения абсолютного давления;

 δ_i - предел допускаемой относительной погрешности измерения температуры;

 δ_* - предел допускаемой относительной погрешности вычисления расхода, приведенного к стандартным условиям (из описания типа на КИУ, равен $\pm 0.01\%$).

Пределы относительной погрешности измерения абсолютного давления вычисляются по следующим формулам:

$$\delta_P = 0.1 + 0.01 P_{\text{max}} / P, \tag{16}$$

где P_{\max} - верхний предел измерения давления (из формуляра на КИУ);

P - давление в рабочих условиях; значение P принимается равным $0.3P_{\text{max}}$.

Пределы относительной погрешности измерения избыточного давления вычисляются по следующим формулам:

$$\delta_{P} = \sqrt{(0.1 + 0.01P_{\text{max}} / P)^{2} + (\delta P_{6} \cdot P_{6 \,\text{max}} / P_{6})^{2}} , \qquad (17)$$

где δP_{δ} - приведенная погрешность измерения атмосферного (барометрического) давления;

 $P_{6\,{
m max}}$ - верхний предел измерения атмосферного (барометрического) давления;

 P_{δ} - среднее значение атмосферного (барометрического) давления в рабочих условиях.

Предел относительной погрешности измерения температуры вычисляется по формуле:

$$\delta_T = \frac{\Delta t}{273.15 + t} \cdot 100 \,, \tag{18}$$

где Δt - предел абсолютной погрешности измерения температуры (из описания типа на КИУ);

t - температура в рабочих условиях (°С), принимается равным верхнему значению рабочего диапазона (из формуляра на КИУ).

Величина δQ_{CT} не должна выходить за границы допускаемых значений, указанных в таблице 5 в соответствии с вариантом исполнения КИУ.

Таблина 5

Характеристика	Значение характеристики		
Границы интервала относительной погрешности измерений расхода, приведенного к стандартным	Диапазон расходов		
условиям без учета погрешности определения коэффициента сжимаемости, при рабочем	$Q_{\text{min}} {\leq Q_{\text{p}}} {\leq 0,} 01Q_{\text{max}}$	$Q_{\text{min}} {\leq} Q_{\text{p}} {\leq} 0.01 Q_{\text{max}}$	
давлении не менее $0.3P_{\text{max}}$, при доверительной вероятности 0.95 (исполнение « 01 »), %	$\pm 0.8^{1.2}$ $\pm 1.1^{3.4}$	$\pm 0,6^{1,2)}$ $\pm 0,8^{3,4)}$	
- для 2 измерительных каналов	±1,6 ⁵⁾ ±2,1 ⁶⁾	±1,1 ⁵⁾ ±1,6 ⁶⁾	
- для 4 измерительных каналов	$ \begin{array}{c} \pm 0.6^{1.2)} \\ \pm 0.8^{3.4)} \\ \pm 1.1^{5)} \\ \pm 1.6^{6)} \end{array} $	$ \begin{array}{c} \pm 0,4^{1,2)} \\ \pm 0,6^{3,4)} \\ \pm 0,8^{5)} \\ \pm 1,1^{6)} \end{array} $	
- для 8 измерительных каналов	$\begin{array}{c} \pm \ 0.6^{1.2)} \\ \pm \ 0.8^{3.4.5)} \\ \pm \ 1.1^{6)} \end{array}$	$\begin{array}{c} \pm \ 0.4^{1.2)} \\ \pm \ 0.6^{3.4.5)} \\ \pm \ 0.8^{6)} \end{array}$	
Границы интервала относительной погрешности	Диапазон расходов		
измерений расхода, приведенного к стандартным	$Q_{min} \le Q_p \le 0.01 Q_{max}$	$Q_{min} \le Q_p \le 0.01 Q_{max}$	
условиям без учета погрешности определения коэффициента сжимаемости, при рабочем давлении не менее 0,3P _{max} , при доверительной вероятности 0,95 (исполнение «02»), %	$\begin{array}{c} \pm 0.8^{3.7)} \\ \pm 1.1^{8)} \\ \pm 2.1^{9)} \\ \pm 2.6^{10)} \end{array}$	$\begin{array}{c} \pm \ 0,6^{3,7)} \\ \pm \ 0,8^{8)} \\ \pm 1,6^{9)} \\ \pm 2,1^{10)} \end{array}$	

 $^{^{1)}}$ При калибровке (поверке) на природном газе проливным методом на эталонной установке с относительной погрешностью не более \pm 0,23 % и использованием корректирующих коэффициентов.

7 Оформление результатов поверки

- 7.1 Результаты поверки заносят в протокол произвольной формы.
- 7.2 Положительные результаты поверки оформляют свидетельством в соответствии с «Порядком проведения поверки средств измерений, требования к знаку

²⁾При калибровке (поверке) на воздухе проливным методом на эталонной установке с относительной погрешностью не более ± 0,23 % и использованием корректирующих коэффициентов для КИУ, предназначенных для эксплуатации при избыточном давлении измеряемой среды до 1.2 МПа включительно.

³⁾При калибровке (поверке) на природном газе (воздухе) проливным методом на эталонной установке с относительной погрешностью не более ± 0,30 % и использованием корректирующих коэффициентов.

⁴⁾При периодической поверке имитационным методом при условии предыдущей поверки проливным методом по пунктам 1), 2) или 3).

⁵⁾При первичной имитационной поверке для DN от 200 включительно и выше.

⁶⁾При первичной имитационной поверке для DN до 200.

 $^{^{7)}}$ При периодической поверке на месте эксплуатации по эталону сличения, имеющему относительную погрешность не более ± 0.3 %.

 $^{^{8)}}$ При периодической поверке на месте эксплуатации по эталону сличения, имеющему относительную погрешность не более \pm 0,5 %.

⁹⁾4-х канальное исполнение КИУ с врезкой в существующий трубопровод; первичная и периодическая поверка обеспечивается имитационным методом.

¹⁰⁾2-х канальное исполнение КИУ с врезкой в существующий трубопровод; первичная и периодическая поверка обеспечивается имитационным методом.

поверки и содержанию свидетельства о поверке», утвержденным Приказом Минпромторга России №1815 от 02 июля 2015 года.

- 7.3 Знак поверки наносится в свидетельство о поверке или паспорте.
- 7.4 При отрицательных результатах поверки расходомера не допускают к применению и выполняют процедуры, предусмотренные «Порядком проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», утвержденным Приказом Минпромторга России №1815 от 02 июля 2015 года.

Приложение А (обязательное) Программируемые параметры КИУ «Вымпел-500»

Наименование параметра	
Измеряемая среда	
Атмосферное давление, кгс/см ²	
Внутренний диаметр первичного преобразователя, мм	
Длина акустического пути, мм	
Материал трубопровода первичного преобразователя	
Нижний и верхний пределы давления измеряемой среды, МПа	
Нижний и верхний пределы температуры измеряемой среды, °С	
Тип термопреобразователя сопротивления	
Нижний и верхний пределы расхода измеряемой среды в рабочих условиях, м ³ /ч	
Метод расчета коэффициента сжимаемости	
Плотность газа в нормальных условиях, кг/м3	
Компонентный состав измеряемой среды в молярных долях	
Калибровочные коэффициенты (К-фактор)	