Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии имени Д.И. Менделеева» ФГУП «ВНИИМ им. Д.И. Менделеева»

СОГЛАСОВАНО

ни И.о. генерального директора

ФГУП «ВНИИМ им, Д.И. Менделеева»

А.Н. Пронин

₹ «09» ноября 2020 г.

Государственная система обеспечения единства измерений

Амплификаторы нуклеиновых кислот с гибридизационнофлуоресцентной детекцией продуктов ПЦР в режиме реального времени Applied Biosystems QuantStudio 5 Методика поверки МП 244-0009-2020

И.о. руководителя НИО госэталонов и стандартных образцов в области биоаналитических и медицинских измерений ФГУП «ВНИИМ им. Д.И.Менделеева»

_ М.С. Вонский

Разработчик:

Руководитель сектора № 2442

А.А. Чубанов

г. Санкт-Петербург 2020 г. Настоящая методика распространяется на амплификаторы нуклеиновых кислот с гибридизационно-флуоресцентной детекцией продуктов ПЦР в режиме реального времени Applied Biosystems QuantStudio 5, предназначенные для измерения концентрации (массовой доли) фрагментов целевой ДНК в исследуемых пробах методом полимеразной цепной реакции (ПЦР) в режиме реального времени. (далее – приборы).

Методика поверки должна обеспечивать прослеживаемость поверяемых приборов к государственному первичному ГПЭ единиц массовой (молярной) доли и массовой (молярной) концентрации органических компонентов в жидких и твердых веществах и материалах на основе жидкостной и газовой хромато-масс-спектрометрии с изотопным разбавлением и гравиметрии ГЭТ208-2019.

Метод, обеспечивающий реализацию методики поверки - прямое измерение поверяемым СИ величины, воспроизводимой стандартным образцом ГСО 9866-2011 СО состава ДНК сои (комплект ГМ-СОЯ-ВНИИМ).

Методикой поверки не предусмотрена возможность проведения поверки на меньшем числе поддиапазонов измерений.

Приборы подлежат первичной и периодической поверке.

Интервал между поверками – 1 год.

1. Перечень операций поверки

Объем и последовательность операций поверки указаны в таблице 1.

Таблица 1

Наименование операции	Номер пункта, в котором изложена методика поверки	Обязательность проведения операции	
		При первичной поверке	При периодической поверке
1. Внешний осмотр средства измерений	п. 6.1	Да	Да
2. Подготовка к поверке и опробование средства измерений	п. 6.2	Да	Да
3. Подтверждение соответствия программного обеспечения	п. 6.3	Да	Да
4. Определение метрологических характеристик:			TE E
4.1. Определение относительной погрешности и относительного СКО случайной составляющей погрешности при измерении массовой доли ГМО сои методом ПЦР	п. 6.4	Да	Да

При получении отрицательных результатов при проведении той или иной операции дальнейшая поверка прекращается.

2. Требования к условиям поверки

- 2.1 При проведении поверки должны быть соблюдены следующие условия:
 - температура окружающего воздуха: от 18 до 30 °C
 - относительная влажность воздуха:
 атмосферное давление:
 от 20 % до 80 %
 от 84 до 106 кПа
- 2.2 Перед проведением поверки прибор следует прогреть в течение не менее 20 минут.
- 2.3 Установка и подготовка анализатора к поверке, выполнение операций при проведении измерений осуществляется в соответствии с эксплуатационной документацией.

3. Требования к специалистам, осуществляющим поверку

3.1 К работе с прибором допускается персонал, прошедший специальный инструктаж и имеющий опыт проведения ПЦР. Для получения данных по поверке допускается участие операторов, обслуживающих прибор (под контролем поверителя).

4. Метрологические и технические требования к средствам поверки

4.1 При проведении поверки применяются средства измерений и оборудование, представленное в таблице 2.

Таблица 2

Номер пункта документа по поверке	Наименование и тип (условное обозначение) основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего технические требования, метрологические и основные технические характеристики средства поверки
6.4	ГСО 9866-2011 состава ДНК сои (КОМПЛЕКТ ГМ-СОЯ-ВНИИМ), регистрационный номер в Федеральном информационном фонде ГСО 9866-2011
6.4	Дозаторы пипеточные Eppendorf Research Plus фирмы Eppendorf-Netheler- Hinz GmbH", Германия, диапазоны объемов дозирования (0,1 – 10), (20 – 200), (100 – 1000) мкл, регистрационный номер в Федеральном информационном фонде 55543-13
6.4	Набор реагентов для идентификации линии (трансформационного события) GTS 40-3-2 генетически модифицированной (ГМ) сои в продуктах питания, пищевом сырье, семенах и кормах для животных методом полимеразной цепной реакции в реальном времени (ПЦР-РВ) «Соя GTS 40-3-2 идентификация», ООО «Синтол», Россия, по ГОСТ Р 57175-2016
6.4	Центрифуга-вортекс Микроспин FV-2400, Biosan, Латвия, по ТУ TN LV 00307246-02-98
6.4	ПЦР-бокс DNA/RNA UV-cleaner UVT/T-M-AR, Biosan, Латвия, (класс 2a, группа 1 по ГОСТ Р 50444)
6.4	Вода деионизованная, ИСО 3694-77 (ОСТ 11.029.003)
6.4	Пробирки объемом 1,5 мл, 0,5 мл, 0,2 мл (производитель соответствует ISO 9001, 13485, 14001)

4.2 Допускается применять средства, не приведенные в перечне, но обеспечивающие определение метрологических характеристик с требуемой точностью.

4.3 Все средства поверки должны иметь сведения о поверке в ФИФ, все ГСО должны иметь действующие паспорта.

5. Требования (условия) по обеспечению безопасности проведения поверки

- 5.1. Перед включением должен быть проведен внешний осмотр приборов с целью определения исправности и электрической безопасности включения их в сеть.
- 5.2 Перед включением в сеть приборов, используемых при поверке, они должны быть заземлены в соответствии с требованиями, указанными в эксплуатационной документации.
- 5.3. При выполнении поверки соблюдают правила техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76, требования электробезопасности по ГОСТ 12.1.019-79; помещение, в котором проводится поверка, должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.
- 5.4. По окончании амплификации отработанные пробирки утилизируют в соответствии с рекомендациями по организации ПЦР лаборатории, согласно МУ 1.3.2569-09 «Организация работы лабораторий, использующих методы амплификации нуклеиновых

кислот при работе с материалом, содержащим микроорганизмы I-IV групп патогенности».

6. Проведение поверки

6.1 Внешний осмотр

При проведении внешнего осмотра прибор проверяется на соответствие следующим требованиям:

- отсутствие внешних повреждений, влияющих на точность показаний;
- отсутствие механических повреждений;
- соответствие комплектности прибора технической документации;
- исправность органов управления и настройки;
- соответствие внешнего вида СИ описанию типа СИ:
- наличие знака утверждения типа в месте, указанном в описании типа СИ;
- контроль соблюдения требований по защите СИ от несанкционированного доступа, указанных в описании типа СИ;
- отсутствие дефектов, способных оказать влияние на безопасность проведения поверки и (или) на результаты поверки; устранение выявленных дефектов до начала поверки.

Прибор считается выдержавшим внешний осмотр, если он соответствует перечисленным выше требованиям.

Прибор с механическими повреждениями к поверке не допускается.

6.2 Подготовка к поверке и опробование средства измерений.

В соответствии с указаниями Руководства по эксплуатации включить прибор. Результаты проверки общей работоспособности прибора считаются положительными, если прибор включается, на дисплее прибора после загрузки отображается название прибора и предложение запрограммировать прогон.

6.3 Проверка программного обеспечения СИ

При проведении поверки приборов выполняют операцию «Подтверждение соответствия программного обеспечения». Операция «Подтверждение соответствия программного обеспечения» состоит в определении номеров версий автономного и встроенного (прошивка) программного обеспечения.

Автономное программное обеспечение запускается при нажатии на иконку «QuantStudio Design&Analysis Software» на рабочем столе управляющего компьютера (устройство должно быть включено).

Просмотр версии автономного ПО «QuantStudio Design&Analysis Software» для устройств происходит следующим образом: запустить программу «QuantStudio Design&Analysis Software» пользователем с правами Администратора, нажать на кнопку «Help»

Затем в выпадающем меню войти в пункт «about QuantStudio Design&Analysis Software», далее откроется всплывающий баннер с информацией о версии программы. Также номер версии отображается в шапке окна программы.

Просмотр версии прошивки доступен при подключенном приборе, через сенсорный экран в меню Settings (Свойства) -> About instrument (О приборе).

Устройство считается прошедшим поверку, если номера версии совпадает с номером версии или выше номера версии, указанного в описании типа.

6.4 Определение метрологических характеристик

- 6.4.1 Подготовить наборы реагентов в соответствии с их инструкциями по применению. Подготовить пробирку (1,5 мл) для приготовления реакционной смеси.
- 6.4.2 Подготовить и подписать 4 микропробирки (0,5 мл) для приготовления градуировочных растворов (Ст1, Ст2, Ст3, Ст4).

- 6.4.3 Подготовить 28 микропробирки для проведения ПЦР, подписать на боку пробирок: C1-4 шт., C2-4 шт., C3-4 шт., C4-4 шт., C4
- 6.4.4 Приготовить реакционную смесь.
- 6.4.4.1 Разморозить 2 пробирки с ПЦР-смесью «Соя GTS 40-3-2» (1 пробирка рассчитана на постановку 25 реакций). Перемешать на центрифуге-вортексе и сбросить капли с помощью кратковременного центрифугирования.
- 6.4.4.2 Для проведения 28 реакций смешать в отдельной пробирке на 1,5 мл (по п. 6.4.1) 588 мкл ПЦР-смеси и 9,2 мкл Таq ДНК-полимеразы, перемешать смесь на вортексе и осадить капли кратковременным центрифугированием
- 6.4.5 Приготовить градуировочные растворы.

Для приготовления градуировочных растворов используется ГСО «ГМ-СОЯ-ВНИИМ-5» и его последовательные разведения в деионизированной воде. Для построения градуировочных кривых используются следующие градуировочные растворы:

Таблица 3

	Описание	Условная концентрация, у.е.	
		Натуральная соя, канал определения VIC*	ГМ соя, канал определения ROX*
Ст1	«ГМ-СОЯ-ВНИИМ-5»	540	27
Ст2	С1, разведенный водой в пропорции 1:2 (в 3 раза)	180	9
Ст3	С2, разведенный водой в пропорции 1:2 (в 3 раза)	60	3
Ст4	С3, разведенный водой в пропорции 1:2 (в 3 раза)	20	1

- 6.4.5.1 Разморозить пробирку ГСО 9866-2011 «ГМ-СОЯ-ВНИИМ-5», тщательно перемешать на центрифуге-вортексе и центрифугировать в течение нескольких секунд для сброса капель.
- 6.4.5.2 Перенести 36 мкл раствора ГСО из пробирки «ГМ-СОЯ-ВНИИМ-5» в пробирку Ст1 (по п. 6.4.2).
- 6.4.5.3 В пробирке Ст2 (по п. 6.4.2) смешать 12 мкл ГСО «ГМ-СОЯ-ВНИИМ-5» из пробирки Ст1 и 24 мкл деионизованной воды, полученный раствор тщательно перемешать на центрифуге-вортексе и центрифугировать в течение нескольких секунд для сброса капель.
- 6.4.5.4 В пробирке Ст3 (по п. 6.4.2) смешать 12 мкл раствора из пробирки Ст2 и 24 мкл деионизованной воды, полученный раствор тщательно перемешать на центрифугевортексе и центрифугировать в течение нескольких секунд для сброса капель.
- 6.4.5.5 В пробирке Ст4 (по п. 6.4.2) смешать 12 мкл раствора из пробирки Ст3 и 24 мкл деионизованной воды, полученный раствор тщательно перемешать на центрифугевортексе и центрифугировать в течение нескольких секунд для сброса капель.

Примечание: данные объемы указаны исходя из 4-кратного дублирования для каждого из 4-х реакционных растворов.

- 6.4.6 Подготовить отрицательный контроль и контрольные образцы.
- 6.4.6.1 Разморозить пробирку отрицательного контрольного образца (ОКО) из набора «Соя GTS 40-3-2 идентификация», тщательно перемешать на центрифуге-вортексе и центрифугировать в течение нескольких секунд для сброса капель.
- 6.4.6.2 Разморозить пробирку ГСО 9866-2011 «ГМ-СОЯ-ВНИИМ-1» (К1, исследуемый

образец), тщательно перемешать на центрифуге-вортексе и центрифугировать в течение нескольких секунд для сброса капель.

6.4.7. В каждую пробирку для проведения ПЦР (по п. 6.4.3) внести 20 мкл реакционного раствора и по 5 мкл образца/градуировочного раствора/отрицательного контроля в соответствии с Таблицей 4.

Таблица 4.

Образец	Количество пробирок	Добавляемый раствор	
C1	4	Ст1	
C2	4	Ст2	
C3	4	Ст3	
C4	4	Ст4	
K1	10	«ГМ-СОЯ-ВНИИМ-1»	
ОКО	2	Вода	

- 6.4.8 Закрыть пробирки крышками и поместить их в термоблок прибора в следующей последовательности: C1 -4 шт., C2 -4 шт., C3 -4 шт., C4 -4 шт., K1 -10 шт., OKO -2 шт. Закрыть прибор.
- 6.4.9 Запрограммировать прибор для выполнения соответствующей программы амплификации и детектирования флуоресцентного сигнала и провести ПЦР-реакцию в режиме реального времени:
- 6.4.9.1 Нажать на иконку «Create new experiment».
- 6.4.9.2 В появившемся окне задать название эксперимента, выбрать тип эксперимента «Standard curve», реагенты «TaqMan Reagents», режим работы «Standard»; нажать «Next» для перехода к заданию параметров амплификации.
- 6.4.9.3 В появившемся окне задать циклограмму со следующими параметрами:

«Hold» – 50°C for 2:00 min

94°C for 5:00 min

«Cycling» - 50 cycles

95°C for 15 s

59°C for 40 s + установить получение данных выделив иконку камеры.

В том же окне задать объем образца 25 мкл. Перейти к следующему экрану, нажав «Next»

- 6.4.9.4 Слева выбрать отсутствие референсного красителя (поменять слева снизу «ROX» на «None»)
- 6.4.9.5 Перейти к расширенным опциям определения образцов (слева сверху вкладка «Advanced setup»
- 6.4.9.6 В поле Мишени («Targets») удалить мишень по умолчанию, добавить мишень «SOY» (натуральная соя), задать для неё краситель VIC; добавить мишень «GM» (ГМсоя), задать для неё краситель ROX
- 6.4.9.7 В поле Образцы («Samples») удалить образец по умолчанию, добавить образцы в соответствие с п.4.2.2.1.

Справа на схеме планшета последовательно выделяя группы образцов, задать для них соответствующие имена (слева), для всех образцов выбрать оба красителя; для образцов С1 – С4 задать в поле «Task» значок «S» (Стандарт) для каждой мишени, в поле «Quantity» (количество) задать условные концентрации для каждой мишени в соответствии с таблицей 2. Для остальных образцов задать в поле «Task» значок «U» (Неизвестный)

Нажать «Next» для перехода к окну запуска программы амплификации.

6.4.9.8 Наверху справа нажать иконку «Start Run», в выпадающем меню выбрать испытываемый прибор. Дождаться окончания амплификации.

- 6.4.10 Получить значения условных концентраций для всех образцов для обоих каналов.
- 6.4.10.1 Во вкладке **Results** на схеме планшета выделить все образцы. Вверху справа нажать «**Analyze**» для проведения автоматического анализа результата. Допускается проведение анализа (определение пороговых циклов) в ручном режиме под контролем опытного пользователя ПО QuantStufio Design&Analysis Software.
- 6.4.10.2 Для каждого канала провести анализ градуировочной кривой: выбрать справа сверху в выпадающем меню пункт «Standard Curve»; щёлкнув по иконке свойств графика последовательно выставить первую и вторую мишень; для каждой мишени записать значения эффективности амплификации, R^2 . При значениях $R^2 \le 95$ % или значениях эффективности менее 85 % результаты ПЦР считаются недостоверными.
- 6.4.10.3 На вкладке с видом образцов перейти к табличному виду, щёлкнув на соответствующую иконку.

Щелкнув правой кнопкой по шапке таблицы добавить к отображаемым параметрам пункт «Quantity» (Количество).

6.4.10.4 Занести в таблицу 6 значения условных концентраций ДНК сои (VIC) и ДНК гмсои (ROX) для каждой повторности образцов К1 и К0,1 и рассчитать значение массовой доли ДНК генетически модифицированной сои в ДНК натуральной сои по формуле 1

$$K_{\text{изм}}\left[\frac{\Gamma}{\kappa\Gamma}\right] = 1000 \times \frac{K_{-}i(ROX)}{K_{-}i(VIC)} \tag{1}$$

Таблица 6.

К1 (ГМ-СОЯ-В	НИИМ- 1)		
	VIC	ROX	Кизм, г/кг
K1 ₁			
K1 ₂			
K1 ₃			
K14			eden re
K15			
K1 ₆			
K17			
K18			
K19			
K1 ₁₀			

6.4.11 Рассчитать среднее значение массовой доли ДНК генетически модифицированной сои линии 40-3-2 в ДНК натуральной сои в ГСО «ГМ-СОЯ-ВНИИМ-1».

Допускается исключение не более 2x результатов в случае выброса из-за ошибки оператора при раскапывании ПЦР-смеси, необходимо учесть исключение выбросов при расчете СКО (по п. 6.4.13, см. ниже).

6.4.12 Рассчитать значение относительной погрешности измерений массовой доли ДНК генетически модифицированной сои линии 40-3-2 в ДНК натуральной сои в ГСО «ГМ-СОЯ-ВНИИМ-1» по формуле

$$\delta = \frac{(K_{cney} - \overline{K}_{usm})}{K_{cney}} \times 100\%, \qquad (2)$$

 K_{cneu} — паспортное значение массовой доли ДНК генетически модифицированной сои линии 40-3-2 в ДНК натуральной сои в ГСО «ГМ-СОЯ-ВНИИМ-1». Результат вычисления заносится в протокол.

6.4.13 Рассчитать значение относительного СКО случайной составляющей погрешности результата измерения значения массовой доли ДНК генетически модифицированной сои в ДНК натуральной сои в ГСО «ГМ-СОЯ-ВНИИМ-1» по формуле 3

$$S = \frac{1}{\overline{K1}_{\text{H3M}}} \sqrt{\frac{\sum_{i=1}^{10} (K1_{i} - \overline{K1}_{\text{H3M}})^{2}}{9}} \times 100 \%$$
 (3)

Результат вычисления заносится в протокол.

- 6.5 Подтверждение соответствия средства измерения метрологическим требованиям
- 6.5.1 Результат построения градуировочных графиков считается положительным (п. 6.4.10.2), если значения коэффициентов корреляции R² составляют не менее 0,95.
- 6.5.2 Прибор считается прошедшим поверку по п. 6.4.12, если относительная погрешность определения массовой доли ДНК генетически модифицированной сои линии 40-3-2 в ДНК натуральной сои в образце ГМ-СОЯ-ВНИИМ-1 не превышает ± 25 %.
- 6.5.3 Прибор считается прошедшим поверку по п. 6.4.13, если относительное СКО случайной составляющей погрешности определения массовой доли ДНК генетически модифицированной сои линии 40-3-2 в ДНК натуральной сое в образце ГМ-СОЯ-ВНИИМ-1 не превышает 15 %.
- 6.5.4 Проверка диапазона измерения при использовании ГСО 9866-2011 состава ДНК сои (КОМПЛЕКТ ГМ-СОЯ-ВНИИМ) проводится одновременно с определением погрешности прибора. Линейность градуировочного графика свидетельствует о корректной работе прибора в диапазоне измерений от 1 г/кг до 50 г/кг массовой доли ГМ ДНК к ДНК натуральной сои.
- 6.5.5 Прибор считается полностью прошедшим поверку, при удовлетворении всех требований, изложенных в п.п. 6.5.1-6.5.4.

7. Оформление результатов поверки

- 7.1. При проведении поверки составляется протокол поверки результатов измерений по форме Приложения А.
- 7.2. Результаты поверки считаются положительными, если прибор удовлетворяет всем требованиям описания типа. Аккредитованное на поверку лицо, проводившее поверку, в случае положительных результатов поверки (подтверждено соответствие средств измерений метрологическим требованиям) заносит данные в ФИФ, наносит знак поверки на средства измерений и (или) выдает свидетельства о поверке (по запросу заявителя), оформленные в соответствии с требованиями к содержанию свидетельства о поверке.
- 7.3. Результаты считаются отрицательными, если при проведении поверки установлено несоответствие поверяемого анализатора хотя бы одному из требований описания типа. Отрицательные результаты поверки заносятся в ФИФ с указанием причин непригодности.

ПРОТОКОЛ ПОВЕРКИ

Nº OT X	.Х.ХХ.20ХХ Г.
Наименование прибора, тип	
Регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений (ОЕИ)	
Заводской номер (если имеется информация)	
Изготовитель (если имеется информация)	
Год выпуска (если имеется информация)	
Заказчик (наименование и адрес)	
Серия и номер знака предыдущей поверки (если такие имеются)	-T. ANDELL:

Вид поверки

Методика поверки

Средства поверки:

Наименование и регистрационный номер эталона, тип СИ, заводской номер, номер паспорта на ГСО	Метрологические характеристики, срок годности ГСО
--	---

Условия поверки:

Параметры	Требования НД	Измеренные значения
Температура окружающего воздуха, °С	от 18 до 30	
Относительная влажность воздуха, %	от 30 до 80	
Атмосферное давление, кПа	от 84,0 до 106,7	

Результаты поверки:

- 1. Внешний осмотр_
- 2. Опробование_
- 3. Подтверждение соответствия ПО

4. Определение метрологических характеристик (в соответствии с требованиями НД на методы и средства поверки)

Наименование параметра/ единица измерений	Максимальное значение относительной погрешности, полученное при поверке	Предел допускаемой относительной погрешности	Максимальное значение относительного СКО случайной составляющей погрешности. полученное при поверке	Предел допускаемого значение относительного СКО случайной составляющей погрешности
Массовая доля ДНК генетически модифицированно й сои линии 40-3-2 в ДНК натуральной сои (ГМ-СОЯ ВНИИМ 1)/ г/кг		±25 %		15 %

^{5.} Дополнительная информация (состояние объекта поверки, сведения о ремонте, юстировке)