УТВЕРЖДАЮ

Государственная система обеспечения единства измерений

Анализаторы влажности «Ametek» модели 5000 с системой подготовки пробы»

Методика поверки 2.р.65491-16

РАЗРАБОТАНА	ГЦИ СИ ООО «Метрологически центр СТП»
ИСПОЛНИТЕЛИ	Н.И. Сибгатуллин
УТВЕРЖДЕНА	Восточно-Сибирский филиал ФГУП «ВНИИФТРИ», 09 апреля 2015 г.

1 ВВЕДЕНИЕ

- 1.1 Настоящая методика поверки распространяется на следующие средства измерений, изготовленные по технической документации ЗАО НИЦ «ИНКОМСИСТЕМ», г. Казань:
- 1.1.1 Анализатор влажности «Ametek» модели 5000 с системой подготовки пробы, заводской № 05-2801-2015 состоящий из:
 - анализатор влажности «Ametek», заводской № 500A413.
- система подготовки пробы «Система измерения влажности газа» зав. № 03-2801-2015.
- 1.1.2 Анализатор влажности «Ametek» модели 5000 с системой подготовки пробы, зав № 06-2801-2015 состоящий из:
 - анализатор влажности «Ametek», заводской № 500A414,
- система подготовки пробы «Система измерения влажности газа»
 зав. № 04-2801-2015.
- 1.2 Настоящая методика устанавливает методику первичной и периодической поверок, а так же первичной поверки после ремонта.
- 1.3 Анализаторы влажности «Аmetek» модели 5000 с системой подготовки пробы, (далее анализаторы) предназначены для измерения объемного содержания влаги в газе в составе системы измерений количества и показателей качества свободного нефтяного газа с Ярудейского месторождения ООО «Яргео». Анализаторы обеспечивают пересчет объемного содержания влаги в температуру точки росы (инея) для газа, не содержащего компонентов, влияющих на погрешность пересчета.
 - 1.4 Межповерочный интервал 1 год.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении поверки должны быть выполнены операции, приведенные в таблице 1.

Таблина 1

	Номер пункта
Наименование операции	методики
	поверки
Внешний осмотр и проверка комплектности	6.2
Опробование	6.3
Определение метрологических характеристик	6.4
Оформление результатов поверки	7

2.2 Если при проведении поверки получен отрицательный результат хотя бы по одной из операций, поверку прекращают.

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки применяются средства, указанные в таблице 2.

Таблица 2

таолица 2		
Наименование средства поверки и	Основные метрологические и технические	
обозначение НТД	характеристики средства поверки	
Генератор влажного газа Родник-4М,	Диапазон воспроизводимой объемной доли	
ТУ 4215-057-14464306-2011,	влаги от 0 до 460000 млн ⁻¹ .	
ГР № 48286-11	Пределы допускаемой относительной	
	погрешности:	
	±2,5 млн ⁻¹ в диапазоне от 10 до 1000 млн ⁻¹ ;	
	±1,5 млн ⁻¹ в диапазоне от 1000 до 460000 млн ⁻¹	
Гигрометр кулонометрический	Диапазоны измерений объемной доли влаги	
БАЙКАЛ-МК,	от 1 до 10 млн ⁻¹ , от 10 до 100 млн ⁻¹ , от 100 до	
ΓP № 36201-07	1000 млн ⁻¹ .	
	Пределы допускаемой относительной	
	погрешности объемной доли влаги по	
	цифровому табло и выходному	
	унифицированному сигналу:	
	± 4 % для диапазона от 1 до 10 млн ⁻¹ ;	
	$\pm 2,5$ % для диапазонов от 10 до 100 млн ⁻¹ и от 100	
	до 1000 млн-1	
Мегаомметр Еб 24/1,	Номинальное напряжение 100, 250, 500, 1000 В.	
ΓP № 25405-08	Пределы основной допускаемой погрешности	
	измерения сопротивления ± 3 %	
Барометр-анероид метеорологический	Диапазон измерения давления 80 - 106 кПа.	
БАММ-1, ТУ25-11.1513-79,	Пределы основной допускаемой погрешности не	
ГР № 5738-76	более \pm 0,2 кПа	
Термометр ртутный стеклянный	Диапазон измерения температуры 0 – 55 °C, цена	
лабораторный ТЛ-4 № 2,	деления 0,1 °C, 1 класс.	
ТУ 25-2021.003-88, ГР № 00303-91		
Манометр деформационный	Верхний предел измерения 1,0 МПа, КТ 0,4	
образцовый типа МО 11202,		
ТУ 25-0501664-74, ГР № 20680-07		
	·	

- 3.2 Средства измерений и вспомогательная аппаратура могут быть заменены аналогичными по техническим и метрологическим характеристикам.
 - 3.3 Все средства поверки должны иметь действующие свидетельства о поверке.

4 ТРЕБОВАНИЯ ТЕХНИКИ БЕЗОПАСНОСТИ И ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 К работе должны допускаться лица, имеющие необходимую квалификацию и изучившие эксплуатационную документацию на анализатор и средства поверки, а также прошедшие инструктаж по технике безопасности в установленном порядке.
- 4.2 При проведении поверки должны выполняться указания, предусмотренные «Правилами технической эксплуатации электроустановок» и «Правилами техники безопасности при эксплуатации электроустановок», а также инструкциями по эксплуатации

оборудования, его компонентов и применяемых средств поверки.

- 4.3 Заземление средств поверки должно осуществляться согласно требованиям ГОСТ 12.2.007.10-87.
- 4.4 Ко всем используемым СИ должен быть обеспечен свободный доступ для заземления, настройки и измерений.
- 4.5 Работы по соединению вспомогательных устройств должны выполняться до подключения к сети питания.

5 УСЛОВИЯ ПОВЕРКИ

При проведении поверки соблюдают следующие условия:

- температура окружающей среды, °C

от 15 до 25;

- относительная влажность окружающего воздуха, %

от 30 до 90:

- атмосферное давление, кПа

от 84 до 106.

В качестве рабочего газа применяется газ от баллона или иного источника сжатого газа (азот ГОСТ 9293-74, воздух ГОСТ 24484-80) с избыточным давлением от 0,3 до 1 МПа.

6 ПОДГОТОВКА К ПОВЕРКЕ

Перед проведением поверки выполняют подготовку анализатора к работе в соответствии с руководством по эксплуатации.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

- 7.1 Внешний осмотр и проверка комплектности.
- 7.1.1 При проведении внешнего осмотра должно быть установлено:
- отсутствие механических повреждений (вмятин, трещин) влияющих на работоспособность анализатора;
- соответствие внешнего вида и маркировки указаниям эксплуатационной документации.
- 7.2 Комплектность анализатора должна соответствовать эксплуатационной документации.
- 7.3 Результаты проверки считают удовлетворительными, если внешний вид, маркировка анализатора соответствуют требованиям эксплуатационной документации.
 - 7.4 Опробование.
- 7.4.1 Опробование работоспособности анализатора осуществляются в соответствии с процедурой тестирования, изложенной в инструкции по эксплуатации анализатора («Меню тестирования системы»). При опробовании необходимо проверить идентификационные данные программного обеспечения анализатора (номер версии ПО).
 - 7.5 Определение метрологических характеристик анализатора.
- 7.5.1 Определение пределов допускаемой относительной погрешности анализатора, при измерении объемной доли влаги в газе, выполняют в трех поддиапазонах измерений: от 1 до $10~\rm M\, m\, H^{-1}$, от $10~\rm до~100~\rm M\, m\, H^{-1}$. В каждом поддиапазоне выполняют одно измерение.

- 7.5.2 Определение пределов допускаемой абсолютной погрешности анализатора, при измерении (расчёте) температуры точки росы/инея, выполняют одновременно с выполнением операций по 7.5.1, переключая анализатор на режим индикации температуры точки росы.
- 7.5.3 Входы поверяемого анализатора и контрольного гигрометра соединяют с выходом эталонного генератора.
- 7.5.4 В соответствии с инструкцией по эксплуатации эталонного генератора устанавливают режимные параметры, обеспечивающие создание газового потока с объемной долей влаги, соответствующей выбранным для поверки значениям поддиапазонов измерения.
- 7.5.5 После выхода эталонного генератора на режим в исследуемом поддиапазоне и установления постоянных показаний анализатора и контрольного гигрометра, выполняют измерение объемной доли влаги, создаваемой генератором.
- 7.5.6 Пределы допускаемой относительной погрешности измерения объемной доли влаги (δx) в заданной точке определяют по формуле (1):

$$\delta x = \frac{x_i - x_0}{x_0} \times 100\% \,, \tag{1}$$

где: x_i – показания анализатора, млн⁻¹;

- x_0 действительное значение объемной доли влаги, создаваемой эталонным генератором, измеренное контрольным гигрометром, млн⁻¹.
- 7.5.7 На основании измеренной объемной доли влаги анализатор автоматически вычисляет температуру точки росы/инея.
- 7.5.8 Пределы допускаемой абсолютной погрешности вычислений температуры точки росы/инея (ΔT) в заданной точке определяют по формуле (2):

$$\Delta T = T_{\text{amerek}} - T_{\text{эт}} , \qquad (2)$$

где: $T_{\text{аметек}}$ -значение температуры точки росы/инея, вычисленное анализатором, °C; $T_{\text{эт}}$ - значение температуры точки росы/инея, создаваемой эталонным генератором, рассчитанное по показаниям контрольного гигрометра, °C.

Для расчета $T_{\text{эт}}$, определяется парциальное давление насыщенного водяного пара (e) в газе, воспроизводимом генератором, по формуле (3):

$$e = \frac{x_0 \times P}{f \times 10^6},\tag{3}$$

- где x_0 действительное значение объемной доли влаги, создаваемой эталонным генератором, измеренное контрольным гигрометром, млн⁻¹;
 - P давление газа в измерительной камере анализатора, г Π а;
 - f—повышающий коэффициент, зависящий от давления и температуры в измерительной камере анализатора, и определяемый по ГСССД 207-2004 «Влажный азот. Повышающие коэффициенты при температуре 283...323 К и давлении 0,1...10,0 МПа».

По парциальному давлению определяется температура точки росы, в соответствии с ГОСТ Р 8.811-2012. «ГСИ. Таблицы психрометрические. Построение, содержание, расчетные соотношения».

7.6 Результаты поверки считаются положительными, если пределы допускаемой относительной погрешности измерений объемной доли влаги не превышают указанных значений для следующих поддиапазонов, %:

– от 1 до 10 млн ⁻¹	±8,0 %;
$-$ от 10 до 100 млн $^{-1}$	±5,0 %;
– от 100 до 1000 млн ⁻¹	±5,0 %;

пределы допускаемой абсолютной погрешности вычисления анализатором температуры точки росы/инея в диапазоне от минус 60 до 30 °C не превышают $\pm 1,0$ °C.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 Положительные результаты поверки анализатора оформляют в соответствии с Приказом Минпромторга РФ № 1815 от 2 июля 2015 г. Выписывается свидетельство о поверке анализатора.
- 8.2 Знак поверки в виде оттиска клейма наносится на свидетельство о поверке анализатора. На корпус полевого блока анализатора знак поверки наносится в виде наклейки или давлением на специальную мастику в месте установки стопорного винта крышки корпуса.
- 8.3 Если анализатор признан непригодным к применению, свидетельство о поверке аннулируется и выписывается извещение о непригодности к применению.