УТВЕРЖДАЮ Директор ФГУП «ВНИИМ им. Д.И.Менделеева»

Н.И.Ханов

2015 r

СТАНЦИИ ДОРОЖНЫЕ АВТОМАТИЧЕСКИЕ МЕТЕОРОЛОГИЧЕСКИЕ «ВУОКСА»

МЕТОДИКА ПОВЕРКИ

№ MП 2551-0144-2015

1.p.63313-16

Руководитель лаборатории ФГУП «ВНИИМ им.Д.И.Менделеева»

_В.П.Ковальков

Инженер лаборатории ФГУП «ВНИИМ им.Д.И.Менделеева»

_А.Ю. Левин

г. Санкт-Петербург 2015 г.

Настоящая методика поверки распространяется на станции дорожные автоматические метеорологические «Вуокса» (далее – станции «Вуокса») предназначенные для автоматических измерений метеорологических параметров: температуры воздуха, температуры поверхности дорожного полотна и взлетно-посадочных полос (далее – ВПП), температуры грунта, относительной влажности воздуха, скорости и направления воздушного потока, атмосферного давления, толщины слоя воды, снега, льда на поверхности дорожного полотна и ВПП, метеорологической оптической дальности.

Интервал между поверками 1 год.

1 Операции поверки

Таблица 1

Hawayayayaya	Номер	Операции	
Наименование операции	пункта МП		е при поверке
		Первичной	Периодической
Внешний осмотр	6.1	+	+
Опробование	6.2	+	+
Определение метрологических характери-		+	+
стик при измерении:		6.3	6.3
-атмосферного давления;	6.3.1		
-температуры поверхности дорожного по-	6.3.2		
лотна и ВПП;			
-толщины слоя воды, снега, льда на поверх-	6.3.3		
ности дорожного полотна и ВПП;			
-температуры грунта;	6.3.4		
-температуры воздуха;	6.3.5		
-относительной влажности воздуха;	6.3.6		
-скорости и направления воздушного потока;	6.3.7		
-метеорологической оптической дальности;	6.3.8		
Подтверждение соответствия ПО	7	+	+

^{1.1} При отрицательных результатах одной из операций поверка прекращается.

2 Средства поверки

Таблица 2

таолица 2		
Наименование средства поверки и	Метрологические характеристики	
вспомогательного оборудования	Диапазон измерений Погрешность, класс	
Государственный специальный эталон	от 0,05 до 100 м/с	Расширенная неопределен-
единицы скорости воздушного потока		ность (коэффициент охвата
ГЭТ 150-2012		k=2)
		(0,00032 + 0,002V) m/c
	от 0 до 360 градусов	± 0,5 градуса
Комплект имитаторов КИ-01	от 20 до 990 об/мин	± 1 об/мин
	от 200 до 15000 об/мин	
	от 0 до 360 градусов	± 1 градус
Термометр эталонный ЭТС-100	от минус 196 °C до 660 °C	± 0,02 °C
Калибратор влажности НМК15	11 %, 33 %, 75 %, 97 %	$\pm 1,3 \%, \pm 1,2 \%, \pm 1,5 \%,$
	11 %, 33 %, 73 %, 97 %	± 2,0 %
Термогигрометр ИВА-6Б, модификация 2П	от 0 до 98 %	±1%
Камера климатическая ТХВ-150	от минус 60 °C до 100 °C	Нестабильность поддержания с погрешностью ± 2 °C

Продолжение таблицы 2

Термостат Quick Cal	от минус 15 °C до 150 °C	Нестабильность поддержа-	
	от минус 15 С до 150 С	ния с погрешностью ± 0,4 °C	
Дальномер лазерный Leica DISTO A5		± 2 мм в диапазоне от 0,05 до	
	от 0,05 до 200 м	30 м включительно	
	01 0,03 до 200 м	± 10 мм в диапазоне от 30 до	
		200 м	
Набор гирь E ₂ по ГОСТ 7328-2001	от 1 до 10 кг	класс точности 2	
Барометр образцовый переносной БОП-	от 5 до 1100 гПа	±0,1 гПа	
1M-2			
Линейка – 1000 д по ГОСТ 427-75	от 0 до 1000 мм	± 0,2 мм	
Комплект поверочный PWA11	от 0 % до 100 %,	± 3 %	
Штангенциркуль ЩЦ1-400-0.1	от 0 до 400 мм	погрешность ± 0,1 мм	
Емкости А, Б (приложение Б)	-	_	
Сильфонный пресс	_	_	
Комплекс ADAM-4000	Диапазоны входных	Основные приведенные по-	
	сигналов:	грешности: по току от 0,05 %	
	± 1 В, от 0 до 20 мА	до 0,2 %; по напряжению от	
		0,05 % до 0,1 %	
ПК типа ноутбук с ПО «Нурег	-	_	
Terminal»			

- 2.1 Средства поверки должны иметь действующие свидетельства о поверке.
- 2.2 Допускается применение других средств поверки с аналогичными или лучшими метрологическими характеристиками.
- 3 Требования безопасности и требования к квалификации поверителя.
- 3.1 К проведению поверки допускаются лица, прошедшие специальное обучение и имеющие право на проведение поверки, изучившие настоящую методику и эксплуатационную документацию (далее ЭД), прилагаемую к станциям «Вуокса».
 - 3.2 При проведении поверки должны соблюдаться:
 - -требования безопасности по ГОСТ 12.3.019-80, ГОСТ 12.2.007.0-75;
 - -требования безопасности, изложенные в эксплуатационной документации;
 - -«Правила технической эксплуатации электроустановок потребителей»;
 - -«Правила ТБ при эксплуатации электроустановок потребителей».

4 Условия поверки

При поверке должны быть соблюдены следующие условия:

-температура воздуха, °С

от 10 до 40;

-относительная влажность воздуха, %

от 40 до 90:

-атмосферное давление, гПа

от 600 до 1100

5 Подготовка к поверке

Перед проведением поверки должны быть выполнены следующие подготовительные работы:

- 5.1 Проверка комплектности станции «Вуокса».
- 5.2 Проверка электропитания станции «Вуокса».
- 5.3 Подготовка к работе и включение преобразователей и центральной системы согласно ЭД (перед началом проведения поверки преобразователи и центральная система должны работать не менее 20 минут).
 - 5.4 Подготовка к работе средств поверки и вспомогательного оборудования согласно ЭД.

6 Проведение поверки

6.1 Внешний осмотр

При проведении внешнего осмотра должно быть установлено соответствие станции «Вуокса» следующим требованиям:

- 6.1.1 Центральное устройство станции «Вуокса», преобразователи, вспомогательное и дополнительное оборудование не должны иметь механических повреждений или иных дефектов, влияющих на качество их работы.
- 6.1.2 Соединения в разъемах питания центрального устройства, преобразователей, вспомогательного и дополнительного оборудования должны быть надежными.
 - 6.1.3 Маркировка станции «Вуокса» должна быть целой, четкой, хорошо читаемой.

6.2.Опробование

Опробование станции «Вуокса» должно осуществляться в следующем порядке:

- 6.2.1 Включите центральное устройство и проверьте его работоспособность.
- 6.2.2 Проведите проверку работоспособности преобразователей, вспомогательного и дополнительного оборудования станции «Вуокса».
- 6.2.3 Контрольная индикация должна указывать на работоспособность центрального устройства, преобразователей, вспомогательного и дополнительного оборудования.
 - 6.3.Определение метрологических характеристик
- 6.3.1 Поверка канала измерений атмосферного давления с барометрами РТВ110 выполняется в следующем порядке:
 - 6.3.1.1 Поместите барометр РТВ110 в камеру климатическую ТХВ-150.
 - 6.3.1.2 Подключите барометр РТВ110 через комплекс ADAM-4000 к ноутбуку.
- 6.3.1.3 Присоедините вакуумные шланги сильфонного пресса к барометру РТВ110 и эталонному барометру БОП-1М-2.
 - 6.3.1.4 Включите барометр РТВ110, барометр БОП-1М-2 и ноутбук.
- 6.3.1.5 Установите значение температуры воздуха в климатической камере равное минус 40 °C. После выхода климатической камеры на заданную температуру сильфонным прессом последовательно задавайте в барометре РТВ110 и эталонном барометре значения абсолютного давления в пяти точках, равномерно распределенных по диапазону измерений.
- 6.3.1.6 Фиксируйте показания барометра РТВ110 на экране ноутбука, а эталонного барометра с его дисплея.
- 6.3.1.7 Повторите пункты 4.1.5 4.1.6 задавая значения температуры равные минус 20 °C, 0 °C, 15 °C, 25 °C, 45 °C, 60 °C.
- 6.3.1.8 Вычислите абсолютную погрешность измерений атмосферного давления, ΔP по формуле:

$\Delta P =$ Ризм -Рэт

где, Рэт - значение атмосферного давления, эталонное измеренное барометром БОП-1М-2, гПа, Ризм - значение атмосферного давления, измеренное барометром РТВ110, гПа.

6.3.1.9 Погрешность измерений атмосферного давления должна составлять:

 $|\Delta P| \le 0.3$ гПа при температуре свыше 15 до 25 °C включительно;

 $|\Delta P|$ ≤ 0,6 гПа при температуре свыше 0 до 15 °C включительно и свыше 25 до 40 °C;

 $|\Delta P| \le 1,0$ гПа при температуре свыше минус 20 до 0 °C включительно и свыше 40 до 45 °C;

 $|\Delta P|$ ≤ 1,5 гПа при температуре от минус 40 до минус 20 °C включительно и свыше 45 до 60 °C.

6.3.2 Поверка канала измерений температуры поверхности дорожного полотна и ВПП с измерителями параметров дорожного покрытия DRS511 (далее – датчик DRS511) и измерителями температуры дорожного покрытия дистанционными DST111 (далее – датчик DST111)выполняется в следующем порядке:

При проведении первичной поверки датчика DRS511:

6.3.2.1. Поместите в климатическую камеру TXB-150 датчик DRS511 и эталонный термометр.

- 6.3.2.2. Подключите ноутбук (через преобразователь измерительный) к эталонному термометру ЭТС-100.
- 6.3.2.3 Произведите технологический прогон датчика DRS511 при температуре 20 °C в течении 10 мин.
- 6.3.2.4. Последовательно задавайте значения температуры в климатической камере в пяти точках равномерно распределенных по диапазону измерений. Повторите измерения в каждой точке не менее 3 раз.
- 6.3.2.5. Фиксируйте показания датчика DRS511 на экране станции «Вуокса», показания эталонного термометра ЭТС-100 на экране ноутбука.
- 6.3.2.6. Вычислите абсолютную погрешность измерений температуры поверхности дорожного полотна и ВПП, $\Delta t_{\text{покр}}$ по формуле:

$$\Delta t_{\text{покр}} = t_{\text{изм}} - t_{\text{эт}}$$

где t_{3T} - значение температуры измеренное термометром эталонным ЭТС-100, °С;

t_{изм} - значение температуры измеренное датчиком DRS511, °C.

6.3.2.7. Погрешность измерений температуры поверхности дорожного полотна и ВПП при использовании датчика DRS511 должна удовлетворять условию:

$$|\Delta t| < 0.5$$
°C

При проведении периодической поверки датчика DRS511:

- 6.3.2.8 Подключите термометр эталонный ЭТС-100 и датчик DRS511 через преобразователи измерительные к ноутбуку согласно схемам приведенным в ЭД.
- 6.3.2.9 Включите последовательно датчик DRS511 и ноутбук. Проведите проверку функционального состояния датчика DRS511 согласно ЭД.
- 6.3.2.10 Поместите в термостат Quick Cal (далее термостат) датчик DRS511 и термометр эталонный ЭТС-100.
- 6.3.2.11 Произведите технологический прогон датчика DRS511 при температуре 20 °C в течении 10 мин.
- 6.3.2.12 Задайте последовательно в термостате значения температуры в пяти точках равномерно распределенных по всему диапазону измерений. Повторите измерения в каждой точке не менее 3 раз.
- 6.3.2.13 На каждой заданной температуре последовательно фиксируйте показания датчика DRS511 на экране станции «Вуокса», термометра эталонного ЭТС-100 на экране ноутбука.
- 6.3.2.14 Вычислите абсолютную погрешность измерений температуры поверхности дорожного полотна и ВПП, $\Delta t_{\text{покр}}$ по формуле:

$$\Delta t_{\text{покр}} = t_{\text{изм}} - t_{\text{эт}}$$

Где – $t_{изм}$ – значение температуры измеренное датчиком DRS511, °C,

t_{эт} – значение температуры измеренное термометром эталонным ЭТС-100, °С

6.3.2.15 Погрешность измерений температуры поверхности дорожного полотна и ВПП при использовании датчика DRS511 должна удовлетворять условию:

$$|\Delta t_{\text{покр}}| \leq 0.5 \, ^{\circ}\text{C}.$$

- 6.3.2.16 Поверка канала измерений температуры дорожного полотна и ВПП с измерителями температуры дорожного покрытия дистанционными DST111 осуществляется в соответствии с методикой поверки МП № 2551-0048-2009, госреестр № 42591-09.
- 6.3.2.17 Погрешность измерений температуры поверхности дорожного полотна и ВПП должна удовлетворять условию:

$$|\Delta t_{DST111}| \le 0.9 \, ^{\circ}C$$
.

- 6.3.3 Поверка канала измерений толщины слоя воды, снега, льда на дорожном полотне и ВПП с измерителями параметров дорожного покрытия DRS511 (далее датчик DRS511) и преобразователями параметров дорожного покрытия дистанционными DSC211 (далее преобразователь DSC211) выполняется в следующем порядке:
 - 6.3.3.1 Подготовьте емкость Б (приложение Б).

- 6.3.3.2 Установите емкость над датчиком DRS511. Места соприкосновения емкости с поверхностью датчика герметизируется.
- 6.3.3.3 Подключите датчик DRS511 (через преобразователи измерительные) к ноутбуку согласно схемам приведенным в ЭД.
- 6.3.3.4 Запустите ПО «Нурег Terminal». Все используемые далее команды вводятся с клавиатуры ноутбука, а ответные сообщения отображаются на его экране.
- 6.3.3.5 Откройте линию. Проведите проверку конфигурации, функционального состояния и настройки датчика DRS511 в соответствии с ЭД.
 - 6.3.3.6 Подготовьте к работе линейку.
 - 6.3.3.7 Заполните емкость водой с толщиной слоя равной 1 мм.
 - 6.3.3.8 Нанесите на линейку индикатор «Водочувствительная паста Владыкина».
 - 6.3.3.9 Проведите измерения толщины слоя воды датчиком DRS511 и линейкой.
- 6.3.3.10 Фиксируйте измеренные значения линейки с её шкалы, а датчика DRS511 с экрана ноутбука.
 - 6.3.3.11 Проведите измерения 2 раза.
 - 6.3.3.12 Занесите измеренные значения толщины слоя воды в протокол.
- 6.3.3.13 Повторите измерения, согласно п.п. 6.3.3.7-6.3.3.12, заполняя емкость водой с толщиной слоя равной 2 мм, 5 мм, 8 мм.
- 6.3.3.14 Повторите измерения, согласно п.п. 6.3.3.7-6.3.3.12, заполняя емкость заранее заготовленным снегом с толщиной слоя равной 1мм, 2 мм, 5 мм, 8 мм.
- 6.3.3.15 Повторите измерения, согласно п.п. 6.3.3.7-6.3.3.12, заполняя емкость заранее изготовленным льдом с толщиной слоя равной 1 мм, 2 мм, 5 мм, 8 мм.
- 6.3.3.16 Вычислите абсолютную погрешность измерений толщины слоя воды, для датчика DRS511, $\Delta H_{\text{воды}}$ по формуле

$$\Delta H_{\text{воды}} = H_{\text{изм}} - H_{\text{эт}}$$

Где – H_{изм} – значение толщины слоя воды измеренное датчиком DRS511, мм,

 $H_{\text{эт}}$ – значение толщины слоя воды эталонное, измеренное линейкой 1000 д, мм

6.3.3.17 Вычислите абсолютную погрешность измерений толщины слоя снега, для датчика DRS511, $\Delta H_{\text{снега}}$ по формуле

$$\Delta H_{\text{снега}} = H_{\text{изм}} - H_{\text{эт}}$$

 $\Gamma_{\text{де}} - H_{\text{изм}} -$ значение толщины слоя снега измеренное датчиком DRS511, мм,

 $H_{\text{эт}}$ – значение толщины слоя снега эталонное, измеренное линейкой, мм

6.3.3.18 Вычислите абсолютную погрешность измерений толщины слоя льда, для датчика DRS511, $\Delta H_{\text{льда}}$ по формуле

$$\Delta H_{\text{льда}} = H_{\text{изм}} - H_{\text{эт}}$$

Где – H_{изм} – значение толщины слоя льда измеренное датчиком DRS511, мм,

Н_{эт} – значение толщины слоя льда эталонное, измеренное штангенциркулем, мм

6.3.3.19 Погрешность измерений толщины слоя воды для датчика DRS511 должна удовлетворять условию:

$$|\Delta H_{\text{воды}}| \leq 0.5 \text{ мм};$$

6.3.3.20 Погрешность измерений толщины слоя снега для датчика DRS511 должна удовлетворять условию:

$$|\Delta H_{\text{chera}}| \le 0.5 \text{ mm};$$

6.3.3.21 Погрешность измерений толщины слоя льда для датчика DRS511 должна удовлетворять условию:

$$|\Delta H_{\text{ЛЬЛА}}| \leq 0.5 \text{ мм};$$

- 6.3.3.22 Поверка канала измерений толщины слоя воды, снега, льда на дорожном полотне и ВПП с преобразователями параметров дорожного покрытия дистанционными DSC211 осуществляется в соответствии с методикой поверки МП №2551-0130-2014, госреестр 58495-14.
- 6.3.3.23 Погрешность измерений толщины слоя воды для преобразователя DSC211 должна удовлетворять условию:

$$|\Delta H_{\text{воды}}| \leq 0.4 \text{ мм};$$

6.3.3.24 Погрешность измерений толщины слоя снега для преобразователя DSC211 должна удовлетворять условию:

$$|\Delta H_{\text{chera}}| \le 0.4 \text{ mm};$$

6.3.3.25 Погрешность измерений толщины слоя льда для преобразователя DSC211 должна удовлетворять условию:

$$|\Delta H_{\text{льда}}| \leq 0.4 \text{ мм};$$

6.3.4 Поверка канала измерений температуры грунта с термометрами сопротивления DTS12G выполняется в следующем порядке:

При проведении первичной поверки:

- 6.3.4.1. Поместите в климатическую камеру TXB-150 термометр сопротивления DTS12G и эталонный термометр ЭТС-100.
- 6.3.4.2. Подключите ноутбук (через преобразователь измерительный) к эталонному термометру ЭТС-100.
- 6.3.4.3 Произведите технологический прогон термометра сопротивления DTS12G при температуре 20 °C в течении 10 мин.
- 6.3.4.4. Последовательно задавайте значения температуры в климатической камере в пяти точках равномерно распределенных по диапазону измерений. Повторите измерения в каждой точке не менее 3 раз.
- 6.3.4.5. Фиксируйте показания термометр сопротивления DTS12G на экране станции «Вуокса», показания эталонного термометра на экране ноутбука.
- 6.3.4.6. Вычислите абсолютную погрешность измерений температуры грунта, $\Delta t_{\text{грунт}}$ по формуле:

$$\Delta t_{\text{грунт}} = t_{\text{изм}} - t_{\text{эт}}$$

- Где t_{H3M} значение температуры грунта измеренное термометром сопротивления DTS12G, °C, t_{3T} значение температуры грунта эталонное, °C
- 6.3.4.7. Погрешность измерений температуры грунта при использовании термометра сопротивления DTS12G должна удовлетворять условию:

$$|\Delta t_{\text{грунт}}| < (0.08 + 0.005 \cdot |t|)$$
°C где, t – измеренное значение температуры

При проведении периодической поверки:

- 6.3.4.8 Подключите термометр эталонный ЭТС-100 и термометр сопротивления DTS12G (через преобразователи измерительные) к ноутбуку согласно схемам приведенным в ЭД.
- 6.3.4.9 Включите ноутбук. Проведите проверку функционального состояния термометра сопротивления DTS12G согласно ЭД.
- 6.3.4.10 Поместите в термостат Quick Cal (далее термостат) термометр сопротивления DTS12G и термометр эталонный ЭТС-100.
- 6.3.4.11 Произведите технологический прогон термометра сопротивления DTS12G при температуре 20 °C в течении 10 мин.
- 6.3.4.12 Последовательно задавайте значения температуры в термостате в пяти точках равномерно распределенных по диапазону измерений.
- 6.3.4.13 На каждой заданной температуре последовательно фиксируйте показания термометра сопротивления DTS12G с экрана станции «Вуокса», термометра эталонного ЭТС-100 на экране ноутбука.
- 6.3.4.14 Вычислите абсолютную погрешность измерений температуры грунта, $\Delta t_{\text{грунт}}$ по формуле:

$$\Delta t_{\text{грунт}} = t_{\text{изм}} - t_{\text{эт}}$$

Где – $t_{изм}$ – значение температуры грунта измеренное термометром сопротивления DTS12G, °C, $t_{эт}$ – значение температуры грунта эталонное, °C

6.3.4.15 Погрешность измерений температуры грунта при использовании термометра сопротивления DTS12G должна удовлетворять условию:

$$|\Delta t_{\text{грунт}}| < \pm (0.08 + 0.005 \cdot |t|)$$
°С, где t – измеренное значение температуры

- 6.3.5 Поверка канала измерений температуры воздуха с измерителями влажности и температуры HMP155 (далее измеритель HMP155) выполняется в следующем порядке: При проведении первичной поверки:
- 6.3.5.1. Поместите в климатическую камеру TXB-150 измеритель HMP155 и эталонный термометр ЭТС-100.
- 6.3.5.2. Подключите ноутбук (через преобразователь измерительный) к эталонному термометру. Произведите технологический прогон измерителя HMP155 при температуре 20 °C в течении 10 мин.
- 6.3.5.3. Последовательно задавайте значения температуры в климатической камере в пяти точках равномерно распределенных по диапазону измерений. Повторите измерения в каждой точке не менее 3 раз.
- 6.3.5.4. Фиксируйте показания измерителя HMP155 на экране станции «Вуокса», показания эталонного термометра на экране ноутбука.
- 6.3.5.5. Определите абсолютную погрешность измерений температуры воздуха, ΔT °C, по формуле:

$$\Delta T = T_{\text{3T}} - T_{\text{изм}}$$

Где - $T_{\text{эт}}$ - значение температуры воздуха эталонное, °С

Т_{изм} - значение температуры воздуха измеренное измерителем HMP155, °C.

6.3.5.6. Погрешность измерений температуры воздуха при использовании измерителя НМР155 должна удовлетворять условию:

 $|\Delta T|$ ≤ (0,226-0,0028 t) °C, в диапазоне от минус 50 до 20 °C включительно; $|\Delta T|$ ≤ (0,055+0,0057 t) °C, в диапазоне свыше 20 до 60 °C.

Где t – измеренное значение температуры

При проведении периодической поверки:

- 6.3.5.7 Поместите в термостат измеритель HMP155 и эталонный термометр ЭТС-100.
- 6.3.5.8 Подключите ноутбук (через преобразователь измерительный) к эталонному термометру ЭТС-100.
- 6.3.5.9 Последовательно задавайте значения температуры в термостате в пяти точках равномерно распределенных по диапазону измерений.
- 6.3.5.10 Фиксируйте показания измерителя HMP155 на экране станции «Вуокса», эталонного термометра на экране ноутбука.
 - 6.3.5.11 Повторите измерения в каждой точке не менее 3 раз.
- 6.3.5.12 Вычислите абсолютную погрешность измерений температуры воздуха, ΔT °C, для измерителя HMP155 по формуле:

$$\Delta T = T_{\text{3T}} - T_{\text{изм}}$$

 Γ де - $T_{\text{эт}}$ - значение температуры воздуха эталонное,

 $T_{\text{изм}}$ - значение температуры воздуха измеренное измерителем HMP155.

6.3.5.13 Погрешность измерений температуры воздуха при использовании измерителя НМР155 должна удовлетворять условию:

 $|\Delta T|$ ≤ (0,226-0,0028 t) °C, в диапазоне от минус 50 до 20 °C включительно; $|\Delta T|$ ≤ (0,055+0,0057 t) °C, в диапазоне свыше 20 до 60 °C, где t – измеренное значение температуры

6.3.6 Поверка канала измерений влажности воздуха с измерителями влажности и температуры HMP155 (далее – измеритель HMP155) выполняется в следующем порядке:

При проведении первичной поверки:

- 6.3.6.1. Поместите в климатическую камеру TXB-150 измеритель HMP155 и термогигрометр ИВА-6Б.
- 6.3.6.2. Последовательно задавайте значения относительной влажности воздуха в пяти точках равномерно распределенных по диапазону измерений. Повторите измерения в каждой точке не менее 3 раз.
- 6.3.6.3. Фиксируйте показания измеритель HMP155 на экране станции «Вуокса», а эталонные значения влажности снимайте с помощью термогигрометра ИВА-6Б.
- 6.3.6.4. Вычислите абсолютною погрешность измерений влажности воздуха, ΔH %, по формуле:

$$\Delta H = H_{\text{M3M}} - H_{\text{3T}}$$

где - H_{3T} - значение влажности воздуха эталонное, измеренное термогигрометром ИВА-6Б;

Низм - значение влажности воздуха измеренное измерителем НМР155.

6.4.6.5. Погрешность измерений влажности воздуха при использовании измерителя НМР155 должна удовлетворять условию:

 $|\Delta H| \le 3$ % в диапазоне от 1 % до 90 % включительно;

 $|\Delta H| \le 4$ % в диапазоне свыше 90 % до 100 %.

При проведении периодической поверки:

- 6.3.6.6 Поместите в приемное отверстие калибратора влажности НМК15 (далее калибратор) измеритель НМР155.
- 6.3.6.7 Последовательно помещайте в растворы солей (NaCl, K_2SO_4) эталонной влажности калибратора измеритель HMP155.
- 6.3.6.8 Последовательно выдерживайте в каждой из солей измеритель HMP155 в течение 2-4 часов.
 - 6.3.6.9 Проведите измерения влажности измерителем НМР155.
- 6.3.6.10 Фиксируйте показания измерителя HMP155 на экране станции «Вуокса», а эталонные значения влажности снимите с таблицы калибратора.
- 6.3.6.11 Вычислите абсолютную погрешность измерений влажности воздуха, ΔH %, при использовании измерителя HMP155 по формуле:

$$\Delta H = H_{\text{\tiny H3M}} - H_{\text{\tiny 3T}}$$

где - Нэт - значение влажности воздуха эталонное,

Низм - значение влажности воздуха измеренное измерителем НМР155.

6.3.6.12 Абсолютная погрешность измерений влажности воздуха при использовании измерителя HMP155 должна удовлетворять условию:

|∆H| ≤ 3 % в диапазоне от 1 % до 90 % включительно;

 $|\Delta H| \le 4 \%$ в диапазоне свыше 90 % до 100 %.

- 6.3.7 Поверка канала измерения скорости воздушного потока с преобразователями скорости воздушного потока WAA151/252 выполняется в соответствии с методикой поверки № 2551-0081-2012, госреестр № 53158-13.
 - 6.3.7.1 Погрешность измерений скорости воздушного потока должна удовлетворять условию:

$$|\Delta V_{WAA151/252}| \le \pm (0.4 + 0.035 \cdot V),$$

где V - измеренная скорость воздушного потока

- 6.3.7.2 Поверка канала измерения направления воздушного потока с преобразователями направления воздушного потока WAV151/252 выполняется в соответствии с методикой поверки № 2551-0085-2012, госреестр № 53215-13.
- 6.3.7.3 Погрешность измерений направления воздушного потока должна удовлетворять условию:

$$|\Delta V_{WAV151/252}| \le 3$$
 градуса

- 6.3.7.4 Поверка канала измерения скорости и направления воздушного потока с преобразователями скорости и направления воздушного потока ультразвуковыми WMT700 осуществляется в соответствии с методикой поверки № 242-0083-2012, госреестр № 50509-12.
 - 6.3.7.5 Погрешность измерений скорости воздушного потока должна удовлетворять условию:

 $|\Delta V_{WMT700}| \le 0.2$ м/с, в диапазоне от 0.1 до 7 м/с включительно, $|\delta V_{WMT700}| \le 3$ % в диапазоне свыше 7 до 75 м/с.

6.3.7.6 Погрешность измерений направления воздушного потока должна удовлетворять условию:

$|\Delta V_{WMT700}| \le 2$ градуса

- 6.3.8 Поверка канала измерения метеорологической оптической дальности с нефелометрами PWD12/22 осуществляется в соответствии с методикой поверки № 2551-0076-2011, госреестр № 48272-11.
- 6.3.8.1 Погрешность измерений метеорологической оптической дальности должна удовлетворять условию:

$$|\delta L_{PWD12/22}| \leq 5 \%$$

- 6.3.9 Поверка комплексных каналов измерений:
- 6.3.9.1 Поверка канала измерений атмосферного давления, скорости и направления воздушного потока, температуры и относительной влажности воздуха и количества осадков с метеостанциями автоматическими WXT520 осуществляется в соответствии с методикой поверки МП 2551-0126-2014 «Метеостанции автоматические WXT520», госреестр № 40333-14.
 - 6.3.9.2 Погрешность измерений атмосферного давления должна удовлетворять условию:

 $|\Delta P| \le 0.5$ гПа при температуре свыше 0 до 30 °C включительно;

 $|\Delta P| \le 1.0$ гПа при температуре от минус 52 до 0 °C включительно и свыше 30 до 60 °C;

6.3.9.3 Погрешность измерений скорости воздушного потока должна удовлетворять условию:

 $|\Delta V|$ ≤ ± 0,5 м/с в диапазоне от 0,2 до 10 м/с включительно;

 $|\delta V| \le 5 \%$ в диапазоне свыше 10 до 60 м/с

6.3.9.4 Погрешность измерений направления воздушного потока должна удовлетворять условию:

$|\Delta V|$ ≤ 3 градуса

6.3.9.5 Погрешность измерений температуры воздуха должна удовлетворять условию:

 $|\Delta T|$ ≤ 0,3°C в диапазоне от минус 52 до 20°C включительно;

 $|\Delta T| \le 0.4$ °C в диапазоне свыше 20 до 40°C включительно;

 $|\Delta T|$ ≤ 0,7°C в диапазоне свыше 40 до 60°C

6.3.9.6 Погрешность измерений относительно влажности воздуха должна удовлетворять условию:

 $|\Delta H| \le 3\%$ в диапазоне от 1 до 90% включительно $|\Delta H| \le 5\%$ в диапазоне свыше 90 до 100%

6.3.9.7 Погрешность измерений количества осадков должна удовлетворять условию:

 $|\Delta M| \le (0.2+0.05 \cdot M)$ мм, где М – измеренное количество осадков

- 7 Подтверждение соответствия программного обеспечения производится в следующем порядке:
- 7.1 Проверьте пломбировку блока центрального устройства по схеме пломбирования, указанной в формуляре «Станции дорожные автоматические метеорологические «Вуокса».
- 7.2 Идентификация встроенного ПО «RWS» осуществляется путем проверки номера версии. Соединитесь с станцией «Вуокса» через интерфейс связи с помощью коммерческой программы «HyperTerminal», параметры соединения указаны в ФО «Станции дорожные автоматические метеорологические «Вуокса»». После установки соединения на экране ПК отобразиться название и номер версии ПО «RWS».
- 7.3 Результаты идентификации программного обеспечения считают положительными, если номер версии ПО «RWS» соответствует номеру версии приведенному в таблице 3.

Таблица 3

Вид проверки	Результат проверки
Определение номера версии (идентификационного номера) ПО «RWS»	7.01

8. Оформление результатов поверки

- 8.1 Результаты поверки оформляют в протоколе, форма которого приведена в Приложении А.
- 8.2 При положительных результатах поверки оформляют свидетельство о поверке установленного образца. Знак поверки наносится на корпус телеметрического шкафа
- 8.3 При отрицательных результатах поверки оформляют извещение о непригодности установленного образца.

Приложение А

Форма протокола поверки

Станция «Буокса» заводской номер
Дата ввода в эксплуатацию «»20года
Место установки
Результаты поверки
•
1. Внешний осмотр
1.1 Замечания
1.2 Выводы
2. Опробование
2.1 Замечания
2.2 Выводы
3. Определение метрологических характеристик станции «Вуокса».
3.1 Погрешность измерений температуры воздуха.
3.1.1 Результаты измерений
3.1.2 Выводы
3.2 Погрешность измерений относительной влажности воздуха.
3.2.1 Результаты измерений
3.2.2 Выводы
3.3 Погрешность измерений скорости воздушного потока.
3.3.1 Результаты измерений
3.3.2 Выводы
3.4 Погрешность измерений направления воздушного потока.
3.4.1 Результаты измерений
3.4.2 Выводы
3.5 Погрешность измерений атмосферного давления.
3.5.1 Результаты измерений
3.5.2 Выводы
3.6 Погрешность измерений метеорологической оптической дальности.
3.6.1 Результаты измерений
3.6.2 Выводы
3.7 Погрешность измерений температуры поверхности дорожного полотна.
3.7.1 Результаты измерений
3.7.2 Выводы
3.8 Погрешность измерений толщины слоя воды, снега, льда на дорожном полотне.
3.8.1 Результаты измерений
3.8.2 Выводы
3.9 Погрешность измерений температуры грунта.
3.9.1 Результаты измерений
3.9.2 Выводы
4.0 Результаты идентификации программного обеспечения
На основании полученных результатов станция «Вуокса» признается:
Для эксплуатации до «»20года.
Поверитель
Подпись ФИО.
Дата поверки «»20года.
Mara nopologia

Приложение Б.

Для проверки диапазона и определения погрешности измерений толщины слоя воды, снега, необходимо использовать две емкости:

Емкость A – представляет собой параллелепипед с дном, выполненный из пластика, размеры емкости 100*100*30 мм. Емкость A служит для подготовительных работ, а именно для подготовки льда.

Емкость Б – представляет собой параллелепипед без дна, выполненный из пластика, размеры емкости 200*200*50 мм. Емкость Б служит вспомогательным средством для проверки диапазона и определения погрешности измерений толщины слоя воды, снега, льда. Емкость устанавливается над датчиком DRS511, места соприкосновения емкости с поверхностью датчика герметизируется для избежание протечек и емкость заполняется водой, снегом или льдом до необходимого уровня.