Приложение № 8 к сведениям о типах средств измерений, прилагаемым к приказу Федерального агентства по техническому регулированию и метрологии от «31» декабря 2020 г. № 2332

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Сызранский НПЗ», 2 очередь

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Сызранский НПЗ», 2 очередь (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, автоматизированного сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную двухуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (ТТ), измерительные трансформаторы напряжения (ТН) и счетчики активной и реактивной электрической энергии (счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.

2-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя сервер под управлением гипервизора VMware на базе закрытой облачной системы (сервер) с программным комплексом (ПК) «Энергосфера», устройство синхронизации времени (УСВ), автоматизированные рабочие места (АРМ), каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям связи поступает в локальную вычислительную сеть (ЛВС) и далее на сервер, где осуществляется обработка измерительной информации, в частности вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов.

Также сервер может принимать измерительную информацию в виде xml-файлов установленных форматов от ИВК прочих АИИС КУЭ, зарегистрированных в Федеральном информационном фонде, и передавать всем заинтересованным субъектам оптового рынка электроэнергии (OPЭ).

Передача информации от APM ООО «РН-Энерго» в программно-аппаратный комплекс АО «АТС» с использованием электронной цифровой подписи субъекта оптового рынка электроэнергии (ОРЭ), в филиал АО «СО ЕЭС» и в другие смежные субъекты ОРЭ осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде хml-файлов установленных форматов в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояний средств и объектов измерений в АО «АТС», АО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая включает в себя часы счетчиков, часы сервера и УСВ. УСВ обеспечивает передачу шкалы времени, синхронизированной по сигналам глобальных навигационных спутниковых систем ГЛОНАСС/GPS.

Сравнение показаний часов сервера с УСВ осуществляется каждые 60 мин, корректировка часов сервера производится при обнаружении расхождения часов сервера с УСВ.

Сравнение показаний часов счетчиков с часами сервера осуществляется во время каждого сеанса связи со счетчиками, корректировка часов счетчиков производится при расхождении показаний часов счетчиков с часами сервера на величину не менее ± 1 с.

Журналы событий счетчиков и сервера отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется ПК «Энергосфера». ПК «Энергосфера» обеспечивает защиту измерительной информации паролями в соответствии с правами доступа. Средством защиты

данных при передаче является кодирование данных, обеспечиваемое программными средствами ПК «Энергосфера». Метрологически значимая часть ПК «Энергосфера» указана в таблице 1. Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений — «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 – Идентификационные данные ПК «Энергосфера»

Идентификационные данные (признаки)	Значение			
Идентификационное наименование ПО	pso_metr.dll			
Номер версии (идентификационный номер) ПО	не ниже 1.1.1.1			
Цифровой идентификатор ПО	cbeb6f6ca69318bed976e08a2bb7814b			
Алгоритм вычисления цифрового идентификатора ПО	MD5			

Метрологические и технические характеристики Таблица 2 — Состав измерительных каналов (ИК) АИИС КУЭ и их метрологические характеристики

		Измерительные компоненты					Метрологические характеристики ИК		
Но- мер ИК	Наименование точки измерений	TT	ТН	Счетчик	УСВ	Сервер	Вид электри- ческой энергии	Границы допускае- мой основ- ной отно- сительной погрешно- сти (±δ), %	Границы допускае-мой относительной погрешности в рабочих условиях $(\pm\delta)$, %
1	2	3	4	5	6	7	8	9	10
1	ПС 110 кВ ГПП-1, РУ-6 кВ, 2 с.ш. 6	ТШЛ-10У3 Кл.т. 0,5 3000/5	HТМИ-6 У3 Кл.т. 0,5 6000/100	ION7650 Кл.т. 0,2S/0,2			Актив- ная	1,1	3,0
	кВ, яч. 43	Рег. № 3972-73 Фазы: А; В; С	Рег. № 51199-12 Фазы: ABC	Рег. № 22898-07	УСВ-2 - Рег. № 41681-10		Реактив- ная	2,2	4,4
2	ПС 110 кВ ГПП-1, РУ-6 кВ, 4 с.ш. 6 кВ, яч. 56	ТШЛ-10У3 Кл.т. 0,5 3000/5 Рег. № 3972-73 Фазы: A; B; C	НТМИ-6 УЗ Кл.т. 0,5 6000/100 Рег. № 51199-12 Фазы: АВС	ION7650 Кл.т. 0,2S/0,2 Рег. № 22898-07		V/) /	Актив- ная Реактив- ная	1,1 2,2	3,0 4,4
3	ПС 110 кВ ГПП-1, ТСН-2 0,4 кВ	ТОП-0,66 Кл.т. 0,2S 100/5 Рег. № 47959-11 Фазы: A; B; C	-	ION7650 Кл.т. 0,2S/0,2 Рег. № 22898-07		VMware	Актив- ная Реактив- ная	0,5 0,7	1,5 1,8
4	ПС 110 кВ ГПП-2, РУ-6 кВ, 1 с.ш. 6 кВ, яч. 11	ТОЛ-НТЗ-10 Кл.т. 0,5S 2000/5 Рег. № 51679-12 Фазы: A; B; C	ЗНОЛП-НТЗ-6 Кл.т. 0,5 6000/√3/100/√3 Рег. № 51676-12 Фазы: A; B; C	ION7650 Кл.т. 0,2S/0,2 Рег. № 22898-07			Актив- ная Реактив- ная	1,1 2,2	3,0 4,4

Продолжение таблицы 2

Прод	продолжение таолицы 2								
1	2	3	4	5	6	7	8	9	10
		ТОЛ-НТЗ-10	ЗНОЛП-НТЗ-6				Актив-		
	ПС 110 кВ ГПП-2,	Кл.т. 0,5S	Кл.т. 0,5	ION7650			ная	1,1	3,0
5	РУ-6 кВ, 3 с.ш. 6	2000/5	$6000/\sqrt{3}/100/\sqrt{3}$	Кл.т. 0,2S/0,2					
	кВ, яч. 24	Рег. № 51679-12	Рег. № 51676-12	Рег. № 22898-07			Реактив-	2,2	4,4
		Фазы: А; В; С	Фазы: А; В; С				ная		
	ПС 6 кВ ТП-90а от	ТЛК10-5	НАМИТ-10				Актив-		
	ГПП-2, РУ-6 кВ, ІІ	Кл.т. 0,5	Кл.т. 0,5	ION7650			ная	1,1	3,0
6	с.ш. 6кВ, яч. 12,	100/5	6000/100	Кл.т. 0,2S/0,2					
	ф.12	Рег. № 9143-01	Рег. № 16687-97	Рег. № 22898-07			Реактив-	2,2	4,4
	ψ.12	Фазы: А; С	Фазы: АВС				ная		
	ПС 6 кВ ТП-52а от	ТОЛ 10-1	НАМИ-10				Актив-		
		Кл.т. 0,5	Кл.т. 0,2	ION7330			ная	1,1	3,3
7	ГПП-2, РУ-6 кВ, II с.ш. 6кВ, яч. 12, КВЛ-6 кВ ф.12	50/5	6000/100	Кл.т. 0,5S/0,5					
		Рег. № 15128-96	Рег. № 11094-87	Рег. № 22898-07	УСВ-2		Реактив-	1,9	4,3
		Фазы: А; С	Фазы: АВС		9 съ-2 Рег. №	VMware	ная		
	ПС 110 кВ ГПП-1,	ТЛШ10	НТМИ-6 УЗ		41681-10	viviware	Актив-		
		Кл.т. 0,5	Кл.т. 0,5	ION7650	41081-10		ная	1,1	3,0
8	РУ-6 кВ, 3 с.ш. 6	3000/5	6000/100	Кл.т. 0,2S/0,2					
	кВ, яч. 28	Рег. № 11077-89	Рег. № 51199-12	Рег. № 22898-07			Реактив-	2,2	4,4
		Фазы: А; В; С	Фазы: АВС				ная		
		ТЛШ10	НТМИ-6 УЗ				Актив-		
	ПС 110 кВ ГПП-1,	Кл.т. 0,5	Кл.т. 0,5	ION7650			ная	1,1	3,0
9	РУ-6 кВ, 1 с.ш. 6	3000/5	6000/100	Кл.т. 0,2S/0,2					
	кВ, яч. 17	Рег. № 11077-89	Рег. № 51199-12	Рег. № 22898-07			Реактив-	2,2	4,4
		Фазы: А; В; С	Фазы: АВС				ная		
	ПС 110 кВ ГПП-1, ТСН-1 0,4 кВ	ТОП-0,66					Актив-		
		Кл.т. 0,2S		ION7650			ная	0,5	1,5
10		100/5	-	Кл.т. 0,2S/0,2					
		Рег. № 47959-11		Рег. № 22898-07			Реактив-	0,7	1,8
		Фазы: А; В; С					ная		

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9	10
		ТОЛ-НТЗ-10	ЗНОЛП-НТЗ-6				Актив-		
	ПС 110 кВ ГПП-2,	Кл.т. 0,5S	Кл.т. 0,5	ION7650			ная	1,1	3,0
11	РУ-6 кВ, 2 с.ш. 6	2000/5	$6000/\sqrt{3}/100/\sqrt{3}$	Кл.т. 0,2S/0,2					
	кВ, яч. 37	Рег. № 51679-12	Рег. № 51676-12	Рег. № 22898-07	УСВ-2		Реактив-	2,2	4,4
		Фазы: А; В; С	Фазы: А; В; С		9 съ 2 Рег. №	VMware	ная		
		ТОЛ-НТЗ-10	ЗНОЛП-НТЗ-6		41681-10	viviwaic	Актив-		
	ПС 110 кВ ГПП-2,	Кл.т. 0,5S	Кл.т. 0,5	ION7650	41061-10		ная	1,1	3,0
12	РУ-6 кВ, 4 с.ш. 6	2000/5	$6000/\sqrt{3}/100/\sqrt{3}$	Кл.т. 0,2S/0,2					
	кВ, яч. 56	Рег. № 51679-12	Рег. № 51676-12	Рег. № 22898-07			Реактив-	2,2	4,4
		Фазы: А; В; С	Фазы: А; В; С				ная		
Пределы допускаемой абсолютной погрешности часов компонентов АИИС КУЭ в рабочих условиях								±5 c	

Примечания:

- 1 В качестве характеристик погрешности ИК установлены границы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0,95.
- 2 Характеристики погрешности ИК указаны для измерений активной и реактивной электроэнергии на интервале времени 30 мин.
- 3 Погрешность в рабочих условиях для ИК №№ 3-5, 10-12 указана для тока 2 % от $I_{\text{ном}}$, для остальных ИК для тока 5 % от $I_{\text{ном}}$; $\cos \varphi = 0.8$ инд.
- 4 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик. Допускается замена УСВ на аналогичное утвержденного типа, а также замена сервера без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО). Замена оформляется актом в установленном собственником АИИС КУЭ порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Таблица 3 – Основные технические характеристики ИК

Наименование характеристики	Значение
Количество ИК	12
Нормальные условия:	
параметры сети:	
напряжение, % от Uном	от 95 до 105
ток, % от Іном	
для ИК №№ 3-5, 10-12	от 1 до 120
для остальных ИК	от 5 до 120
коэффициент мощности соѕф	0,9
частота, Гц	от 49,8 до 50,2
температура окружающей среды, °С	от +15 до +25
Условия эксплуатации:	
параметры сети:	от 90 до 110
напряжение, % от Ином	
ток, % от Іном	от 1 до 120
для ИК №№ 3-5, 10-12	от 5 до 120
для остальных ИК	от 0,5 до 1,0
коэффициент мощности соѕф	от 49,6 до 50,4
частота, Гц	от -45 до +40
температура окружающей среды в месте расположения ТТ и ТН, °С	
температура окружающей среды в месте расположения счетчиков, °С	от -4 до +40
Надежность применяемых в АИИС КУЭ компонентов:	
для счетчиков:	
среднее время наработки на отказ, ч, не менее	35000
среднее время восстановления работоспособности, ч для УСВ:	72
среднее время наработки на отказ, ч, не менее	45000
среднее время восстановления работоспособности, ч	2
для сервера:	
среднее время наработки на отказ, ч, не менее	70000
среднее время восстановления работоспособности, ч	1
Глубина хранения информации:	
для счетчиков:	
тридцатиминутный профиль нагрузки в двух направлениях, сут,	
не менее	45
при отключении питания, лет, не менее	9
для сервера:	
хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;

резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии по электронной почте.

В журналах событий фиксируются факты:

- журнал счетчиков:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчиках.
- журнал сервера: параметрирования;

пропадания напряжения;

коррекции времени в счетчиках и сервере;

пропадание и восстановление связи со счетчиками.

Защищенность применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование: счетчиков электрической энергии; промежуточных клеммников вторичных цепей напряжения; испытательной коробки.
- защита на программном уровне информации при хранении, передаче, параметрировании:

счетчиков электрической энергии;

сервера.

Возможность коррекции времени в:

счетчиках электрической энергии (функция автоматизирована);

сервере (функция автоматизирована).

Возможность сбора информации:

о состоянии средств измерений;

о результатах измерений (функция автоматизирована).

Цикличность:

измерений 30 мин (функция автоматизирована);

сбора не реже одного раза в сутки (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 — Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт./экз.
Трансформаторы тока	ТШЛ-10У3	6
Трансформаторы тока опорные	ТОП-0,66	6
Трансформаторы тока	ТОЛ-НТЗ-10	12
Трансформаторы тока	ТЛК10-5	2
Трансформаторы тока	ТОЛ 10-1	2
Трансформаторы тока	ТЛШ10	6
Трансформаторы напряжения	НТМИ-6 У3	4
Трансформаторы напряжения	ЗНОЛП-НТЗ-6	12
Трансформаторы напряжения	НАМИТ-10	1
Трансформаторы напряжения	НАМИ-10	1
Счетчики электрической энергии многофункциональные	ION	11
Устройства синхронизации времени	УСВ-2	1
Сервер на базе закрытой облачной системы	VMware	1
Методика поверки	МП ЭПР-279-2020	1
Формуляр	ЭНПР.411711.044.ФО	1

Поверка

осуществляется по документу МП ЭПР-279-2020 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Сызранский НПЗ», 2 очередь. Методика поверки», утвержденному ООО «ЭнергоПромРесурс» $04.09.2020~\mathrm{r}$.

Основные средства поверки:

- трансформаторов тока по ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения по ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- счетчиков ION по документу МП 2203-0066-2006 «Счетчики электрической энергии многофункциональные ION. Методика поверки», утвержденному ГЦИ СИ «ВНИИМ им. Д.И. Менделеева» в декабре 2006 г.;
- УСВ-2 по документу ВЛСТ 237.00.001И1 «Устройство синхронизации времени УСВ-2. Методика поверки», утвержденному ФГУП «ВНИИФТРИ» 12.05.2010 г.;
- блок коррекции времени ЭНКС-2 (регистрационный номер в Федеральном информационном фонде 37328-15);
- анализатор количества и показателей качества электрической энергии AR.5L (регистрационный номер в Федеральном информационном фонде 44131-10);
- вольтамперфазометр ПАРМА ВАФ®-А (регистрационный номер в Федеральном информационном фонде 22029-10).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке АИИС КУЭ.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии с использованием АИИС КУЭ АО «Сызранский НПЗ», 2 очередь», аттестованном ООО «ЭнергоПромРесурс», аттестат аккредитации № RA.RU.312078 от 07.02.2017 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) АО «Сызранский НПЗ», 2 очередь

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «РН-Энерго» (ООО «РН-Энерго»)

ИНН 7706525041

Адрес: 143402, Московская обл., г. Красногорск, ул. Международная, д. 14, секция 5-

001

Телефон: (495) 777-47-42 Факс: (499) 576-65-96

Web-сайт: www.rn-energo.ru E-mail: rn-energo@rn-energo.ru

Испытательный центр

Общество с ограниченной ответственностью «ЭнергоПромРесурс» (ООО «ЭнергоПромРесурс»)

Адрес: 143443, Московская обл., г. Красногорск, мкр. Опалиха, ул. Ново-Никольская, д. 57, офис 19

Телефон: (495) 380-37-61

E-mail: energopromresurs2016@gmail.com

Аттестат аккредитации ООО «ЭнергоПромРесурс» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312047 от 26.01.2017 г.