СОГЛАСОВАНО

Генеральный директор

000 «Автопрогресс-М»

А.С. Никитин

«11» апреля 2019 г.

Сканеры лазерные серии POLARIS

МЕТОДИКА ПОВЕРКИ

МП АПМ 17-19

Настоящая методика поверки распространяется на сканеры лазерные серии POLARIS, производства компании «Teledyne Optech Incorporated», Канада (далее – сканеры) и устанавливает методику их первичной и периодической поверки.

Интервал между поверками - 1 год.

1 Операции поверки

При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1.

№№ пункта	Наименование операции	Проведение операций при	
		Первичной поверке	периодической поверке
7.1	Внешний осмотр	Да	Да
7.2	Опробование, идентификация программного обеспечения	Да	Да
7.3	Определение абсолютной погрешности измерений расстояний	Да	Да

2 Средства поверки

При проведении поверки должны применяться эталоны, приведённые в таблице 2.

Таблица 2

№ пункта	Наименование эталонов и их основные метрологические			
документа по	и технические характеристики			
поверке				
7.1	Эталоны не применяются			
7.2	Эталоны не применяются			
7.3	Рабочий эталон 2-го разряда по Государственной поверочной схеме для координатно-временных средств измерений утвержденной приказом Федерального агентства по техническому регулированию и метрологии от 29 декабря 2018 г. № 2831 - фазовый светодальномер (электронный тахеометр) Вспомогательное оборудование: щит-мишень белого цвета размером не менее (0,2×0,2) м; уровень рамный или брусковый, ПГ 2 мм/м			

Допускается применять другие средства поверки, обеспечивающие определение метрологических характеристик с точностью, удовлетворяющей требованиям настоящей методики.

3 Требования к квалификации поверителей

К проведению поверки допускаются лица, изучившие эксплуатационную документацию на приборы и средства поверки, и аттестованные в качестве поверителя средств измерений в установленном порядке.

4 Требования безопасности

При проведении поверки, должны соблюдаться требования по технике безопасности согласно эксплуатационной документации на приборы и поверочное оборудование, правила по технике безопасности, которые действуют на месте проведения поверки, требования МЭК-825 «Радиационная безопасность лазерной продукции, классификация оборудования, требования и руководство для потребителей», а также правила по технике безопасности при производстве топографо-геодезических работ ПТБ-88. (Утверждены коллегией ГУГК при СМ СССР 09.02.1989 г., № 2/21).

5 Условия проведения поверки

При проведении поверки должны соблюдаться следующие условия измерений:

6 Подготовка к поверке

Перед проведением поверки должны быть выполнены следующие подготовительные работы:

- проверить наличие действующих свидетельств о поверке на средства поверки;
- сканеры и средства поверки привести в рабочее состояние в соответствии с их эксплуатационной документацией.

7 Проведение поверки

7.1 Внешний осмотр, идентификация программного обеспечения

При внешнем осмотре должно быть установлено соответствие сканера следующим требованиям:

- отсутствие механических повреждений и других дефектов, влияющих на эксплуатационные и метрологические характеристики прибора;
- наличие маркировки и комплектности согласно требованиям эксплуатационной документации на прибор.

Если хотя бы одно из перечисленных требований не выполняется, прибор признают непригодным к применению, дальнейшие операции поверки не производят.

7.2 Опробование, идентификация программного обеспечения

- 7.2.1 При опробовании должно быть установлено соответствие поверяемого сканера следующим требованиям:
 - отсутствие качки и смещений неподвижно соединенных деталей и элементов;
 - плавность и равномерность движения подвижных частей;
 - правильность взаимодействия с комплектом принадлежностей;
 - работоспособность всех функциональных режимов и узлов.
- 7.2.2 Проверку идентификационных данных программного обеспечения проводить следующим образом:
- для определения версии микропрограммного обеспечения (МПО) необходимо включить сканер, далее на экране сканера в правом верхнем углу нажать кнопку «I» (Информация), после чего на экране появиться вся информация о приборе, включая номер версии МПО (см. рисунок 1);

Рисунок 1

- для определения версии «Teledyne Optech ATLAScan» необходимо открыть программу, в окне «выбор/создание проекта» внизу будет отображена версия ПО.

Полученные идентификационные данные программного обеспечения должны соответствовать приведённым в таблице 3.

Таблина 3.

Идентификационное наименование ПО	МПО	Teledyne Optech ATLAScan
Номер версии (идентификационный номер ПО), не ниже	3.17.8-3.1	3.3.2.712

Если хотя бы одно из перечисленных требований не выполняется, сканер признают непригодным к применению, дальнейшие операции поверки не производят.

7.3 Определение абсолютной погрешности измерений расстояний

Абсолютная погрешность измерений расстояний определяется путём сличения с эталонным тахеометром 2-го разряда по Государственной поверочной схеме для координатно-временных средств измерений утвержденной приказом Федерального агентства по техническому регулированию и метрологии от 29 декабря 2018 г. № 2831.

Необходимо провести многократно, не менее 5 раз, измерения не менее 3 контрольных (эталонных) линий, действительные длины которых равномерно расположены в заявляемом диапазоне измерений расстояний прибором и определены с помощью эталонного тахеометра.

Определение абсолютной погрешности измерений расстояний проводить в следующей последовательности:

- разместить в зоне проведения поверки штатив для установки сканера;
- разместить на штативе эталонный тахеометр;
- разместить в зоне проведения поверки штатив для установки мишени. Штатив необходимо установить на расстоянии близком (но не более) к верхнему пределу измерений расстояний сканера;
- установить на него щит-мишень белого цвета размером не менее (0,2×0,2) м. При помощи уровня убедиться в том, что щит-мишень установлена в вертикальной плоскости. Располагать щит-мишень следует к штативу сканера таким образом, чтобы плоскость щита-мишени была перпендикулярна направлению на штатив;
 - разместить в геометрическом центре марки-мишени отражательную призму;
- включить эталонный тахеометр, перевести его в отражательный режим измерений расстояний;
- измерить эталонным тахеометром расстояние $R_{\text{дейст}}$ до призмы на марке-мишени. Результат занести в протокол;
 - выключить и демонтировать эталонный тахеометр с его трегера. Убрать призму с мишени;
 - установить на штатив на оставленный трегер поверяемый сканер;
- через интерфейс пользователя сканера выставить качество и разрешение сканирования не ниже уровня «высокое» и затем запустить процедуру сканирования. Дождаться окончания сканирования;
 - сохранить данные, полученные при сканировании;
 - повторить вышеописанные операции по сканированию марки-мишени не менее 5 раз;
- по завершению процесса сканирования, снять с трегера сканер и снова установить на его место эталонный тахеометр;
 - снова разместить в геометрическом центре марки-мишени отражательную призму;
- включить эталонный тахеометр, перевести его в отражательный режим измерений расстояний;
- измерить эталонным тахеометром расстояние $R_{\text{дейст кон}}$ до призмы на марки-мишени. Результат измерений не должен отличаться от значения $R_{\text{дейст кон}}$ более чем на величину погрешности, приписанную эталонном тахеометру. В случае если $R_{\text{дейст кон}}$ отличается от значения $R_{\text{дейст}}$ более чем на величину погрешности, приписанную эталонном тахеометру, повторить описанные выше операции сканирования заново;
- повторить вышеописанные операции для ещё как минимум двух контрольных расстояний, действительные длины которых равномерно расположены в заявленном диапазоне измерения расстояний поверяемого сканера;
 - скачать и обработать данные, полученные при сканировании;

- локализовать через ПО точки облака, относящиеся к отсканированной марке-мишени. Провести построение плоскости минимум по 4-м точкам. Построить на полученной плоскости точку, соответствующую геометрическому центру марки-мишени методом проекции;
 - произвести вычисление расстояния $R_{{\scriptscriptstyle \mathsf{H3M}}\,i\,j}$ на построенную точку;
- определить абсолютную погрешность измерений расстояний (при доверительной вероятности 0.95) ΔR по формуле:

$$\Delta R_{j} = \left(\frac{\sum_{i=1}^{n} R_{u_{3Mij}}}{n} - R_{\partial e\bar{u}cmj}\right) \pm 2 \cdot \sqrt{\frac{\sum_{i=1}^{n} \left(R_{u_{3Mij}} - \frac{\sum_{i=1}^{n} R_{u_{3Mij}}}{n}\right)^{2}}{n-1}},$$

где ΔR_j - абсолютная погрешность измерений j-го расстояния, мм;

 $R_{\text{дейст }j}$ - эталонное значение j-го расстояния, мм;

 $R_{u_{3M}\,i\,j}$ - измеренное значение ј-го расстояния, і-м приемом, мм

и - число приемов измерений ј-ого расстояния.

Значение абсолютной погрешности не должны превышать значения, указанного в Приложении А к настоящей методике поверки.

Если требования данного пункта не выполняются, прибор признают непригодным к применению, дальнейшие операции поверки не производят.

8 Оформление результатов поверки

- 8.1 Результаты поверки оформляются протоколом, составленным в виде сводной таблицы результатов поверки по каждому пункту раздела 8 настоящей методики поверки с указанием числовых значений результатов измерений и их оценки по сравнению с допускаемыми значениями.
- 8.2 При положительных результатах поверки прибор признают годным к применению и оформляют свидетельство о поверке установленной формы. Знак поверки наносится на свидетельство о поверке в виде наклейки и / или поверительного клейма.
- 8.3 При отрицательном результате поверки прибор признают непригодным к применению и оформляют извещение о непригодности установленной формы с указанием основных причин.

Руководитель отдела OOO «Автопрогресс-М»

Приложение А

(Обязательное)

Метрологические характеристики

Таблица А.1 - Метрологические характеристики

Наименование характеристики	Значение		
Модификация	POLARIS HD	POLARIS ER	POLARIS LR
Диапазон измерений расстояний, м: - для поверхностей с коэффициентом диффузного отражения не менее 0,9 - для поверхностей с коэффициентом		от 1,5 до 750,0	от 1,5 до 2000,0
диффузного отражения не менее 0,2	от 1,5 до 125,0	от 1,5 до 400,0	от 1,5 до 976,0
Границы допускаемой абсолютной погрешности измерений расстояний (при доверительной вероятности 0,95), мм	±2·(4+10·10 ⁻⁶ ·D),		
	где D – измеряемое расстояние в мм		