ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Станции контроля загрязнения атмосферного воздуха автоматические «ЧИСТЫЙ ВОЗДУХ-ПЛЮС»

Назначение средства измерений

Станции контроля загрязнения атмосферного воздуха автоматические «ЧИСТЫЙ ВОЗДУХ-ПЛЮС» (далее – станция) предназначены для:

- непрерывных автоматических измерений массовой концентрации загрязняющих веществ (оксидов азота (NO, NO₂), диоксида серы (SO₂), сероводорода (H₂S), аммиака (NH₃), оксида углерода (CO), суммы углеводородов (Σ CH), метана (CH₄);
 - измерений массовой концентрации пыли различного происхождения;
- автоматических измерений метеорологических величин, характеризующих состояние приземного слоя атмосферы (атмосферное давление; температура и влажность воздуха; скорость и направление ветра; количество и тип осадков только для стационарной модификации));
- формирования и заполнения файлов суточных данных, месячной базы данных и графической базы данных;
 - сбора, обработки и хранения полученных данных;
 - передачи информации в центр сбора и обработки информации.

Описание средства измерений

Принцип действия станций основан на комплексном анализе загрязнений атмосферного воздуха и измерении его метеорологических параметров.

Станции выпускаются в двух модификациях: стационарная и мобильная. Стационарная станция размещается в контейнере, а мобильная (возимая) станция размещается на базе автомобиля.

Станции представляют собой комплекс средств измерений утвержденного типа и обрабатывающих средств, размещенных внутри и снаружи станции. Станция состоит из:

- газоаналитического комплекса;
- метеорологического комплекса;
- измерителя-регулятора температуры воздуха в газовых магистралях;
- станции с системой жизнеобеспечения (СЖ);
- персонального компьютера (ПК) с программным обеспечением (ПО);
- аппаратуры передачи данных (по кабелям (RS232, RS422, Ethernet), радио и/или GSM-модема в зависимости от требований заказчика);
 - источника(-ов) бесперебойного питания (ИБП).

Газоаналитический комплекс расположен внутри станции и включает в свой состав следующие типы газоанализаторов (принцип действия и газовые составляющие, которые они могут измерять, приведены в таблице 1).

Таблина 1

таолица т			
Газоанализатор	Определяемый компонент	Принцип действия	Регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений
APXA-370	Диоксид серы (SO ₂)	флуоресцентный	54532-13
APSA-370 H ₂ S	Сероводород (H ₂ S)	флуоресцентный со встроенным конвертером (CU-1)	54532-13
APNA-370	Сумма окислов азота (NOx) в пересчете на оксид азота (NO) Диоксид азота (NO ₂)	хемилюминесцентный, хемилюминесцентный с конвертером	54532-13
APMA-370	Оксид углерода (CO)	оптико-абсорбционный (в ИК области спектра)	54532-13
APNA-370	Аммиак (NH ₃)	хемилюминесцентный с конвертером (CU-2)	54532-13
ГАММА ЕТ	Сумма углеводородов в пересчете на метан (∑СН), метан (СН ₄), сумма углеводородов за вычетом метана (∑NCH)	пламенно-ионизационный	22331-07
EDM	Пыль (PM10, PM2,5, общая пыль TSP)	оптический	72231-18

Отбор проб и подача анализируемого атмосферного воздуха на газоанализаторы осуществляется при помощи пробоотборного зонда «Атмосфера - 4М» (или эквивалента), который обеспечивает возможность одновременного отбора проб по пяти независимым каналам с максимальным объемным расходом воздуха в канале до 20 дм³/мин.

Отбор проб на анализатор пыли осуществляются при помощи систем пробоотбора, входящих в комплектацию этих изделий.

Для автоматического измерения метеорологических величин, характеризующих состояние приземного слоя атмосферы, применяется станция автоматическая метеорологическая Vantage Pro2 (рег. № 40331-14), которая осуществляет:

- измерение атмосферного давления, температуры и влажности воздуха, скорости и направления ветра;
 - обработку измеренной информации;
 - передачу значений измеренных параметров по интерфейсу RS485 или USB на ПК.

Метеорологический комплекс размещается на метеорологической мачте, которая крепится к корпусу станции.

СЖ располагается внутри станции и обеспечивает:

- распределение электроэнергии между электроприемниками;
- поддержание температуры воздуха внутри станции в заданном диапазоне;
- выдачу информации о температуре внутри станции на цифровой индикатор измерителя-регулятора TPM202 и на ПК по интерфейсу RS485;
 - освещенность в рабочей зоне станции не менее 150 лк.

Данные с газоанализаторов, анализаторов пыли, метеорологического комплекса передаются на вход ПК, расположенного внутри станции.

Сбор и обработку измеренной информации осуществляет ПК, расположенный внутри станции и оснащенный специальным ПО, который является центральным устройством (УЦ) станции. УЦ производит сбор, обработку и осреднение за 20 мин данных, поступающих от измерительных каналов.

При наличии центра сбора информации (ЦСИ) для передачи информации от УЦ станции в ЦСИ могут использоваться различные каналы связи (коммутируемая/некоммутируемая телефонная линия, радиоканал, сотовая связь, Интернет). Связь осуществляется по запросам ЦСИ в основном режиме работы станции и инициативно в аварийном.

ИБП обеспечивает работу станции в полном объеме функционирования не менее чем на 30 минут.

В станции с помощью СЖ (электрообогреватель и кондиционер) поддерживается температура на уровне (от плюс 19 до плюс 25) °C.

В станции установлены датчики выхода температуры воздуха за заданные пределы. Станция контролирует выход температуры воздуха в станции за пределы менее плюс 5 $^{\circ}$ C и более плюс 40 $^{\circ}$ C.

Общий вид станции представлен на рисунках 1 - 4.

Рисунок 1 - Общий вид стационарной станции

Рисунок 2 – Внешний вид компановки станции в стационарном исполнении

Рисунок 3 - Общий вид мобильной станции

Рисунок 4 – Внешний вид компановки станции в мобильном исполнении

Для обеспечения защиты от несанкционированного доступа к данным станции требуется пломбировать системный блок компьютера, установленного в стойке. Схема пломбировки от несанкционированного доступа представлена на рисунке 5.

Место пломбировки от несанкционированно

Рисунок 5 - Схема пломбировки от несанкционированного доступа

Программное обеспечение

Станции имеют встроенное ΠO средств измерений, входящих в состав станций, и автономное ΠO МИАС.

Автономное ПО выполняет следующие основные функции:

- непрерывный автоматический опрос газоанализаторов, метеорологического комплекса и датчиков СЖ;
 - обработка полученной информации;

- формирование и заполнение файлов суточных данных, месячной базы данных и графической базы данных;
- передача результатов обработки с заданной периодичностью по запросу ЦСИ по различным линиям связи;
 - ведение протокола работ и буферное накопление информации на жестком диске.

Влияние ПО станции учтено при нормировании метрологических характеристик.

Уровень защиты программного обеспечения «средний» в соответствии с Р 50.2.077-2014.

Таблица 2 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	МИАС
Номер версии (идентификационный номер) ПО	не ниже 1.5
Цифровой идентификатор ПО	-

Метрологические и технические характеристики

Таблица 3 – Метрологические характеристики газоанализаторов

таолица 5	iponorn reekne z	характеристики газоа.	пштизиторов		
0	Газоанализа-	Диапазоны измерений		Пределы допускаемой погрешности*	
<u> </u>		массовой	объемной	приведен-	относите-
компонент	торы	концентрации,	доли, млн ⁻¹	ной ү, %	льной δ, %
		$M\Gamma/M^3$			
Диоксид серы	APXA-370 SO ₂	от 0 до 0,06 включ.	от 0 до 0,02 включ.	±20	-
(SO_2)	711 711 370 BO ₂	св. 0,06 до 6,0	св. 0,02 до 2,0	-	±20
Сероводород	APSA-370 H ₂ S	от 0 до 0,008 включ.	от 0 до 0,005 включ.	±20	-
(H_2S) APSA-3/	AF 3A-3 / 0 1123	св. 0,008 до 1,5	св 0,05 до 1,0	-	±20
Сумма		от 0 до 0,07 включ.	от 0 до 0,05 включ.	±20	-
окислов азота		св. 0,07 до 4,0	св. 0,05 до 3,0	-	±20
(NO _X) B	APNA-370				
пересчете на оксид азота		от 0 до 0,10 включ.	от 0 до 0,05 включ.	±20	-
(NO) Диоксид		св. 0,10 до 6,0	св. 0,05 до 3,0	-	±20
азота (NO ₂)					
Оксид	APMA-370	от 0 до 3,0 включ.	от 0 до 2,5 включ.	±15	-
углерода (СО)	AI WIA-370	св. 3,0 до 125,0	св. 2,5 до 100,0	-	±15
Аммиак	APNA-370	от 0 до 0,04 включ.	от 0 до 0,05 включ.	±20	-
(NH3)	111117-570	св. 0,04 до 2,5	св. 0,05 до 3,0	-	±20

Продолжение таблицы 3

Опродолизм	Газоанализа- торы	Диапазоны измерений		Пределы допускаемой погрешности*	
Определяемый компонент		массовой концентрации, мг/м ³	объемной доли, млн ⁻¹	ппивелен- ной ү, %	относительной δ, %
Сумма углеводородо в в пересчете на метан		от 0 до 5,0 включ. св. 5,0 до 100,0	от 0 до 7,0 включ.		мг/м ³ олютная)
(ΣCH) , метан (CH_4) , сумма углеводородо в за вычетом метана (ΣNCH)	ГАММА ЕТ		св. 7,0 до 136,71	-	±20

Таблица 4 – Метрологические характеристики анализатора пыли типа EDM 180+

Наименование характеристики	Значение
Диапазон измерений массовой концентрации пыли, мг/м ³	от 0,01 до 10
Пределы допускаемой относительной погрешности, %	±20

Таблица 5 — Метрологические характеристики станции автоматической метеорологической Vantage Pro2

Значение	
от 540 до 1100	
±1	
от -40 до +65	
±0,5	
от 10 до 98	
±3	
±4	
от 0,5 до 60	
±1	
±5	
от 0 до 360	
±6	
от 0,2 до 999,8	

Продолжение таблицы 5

Пределы допускаемой погрешности измерений количества осадков:	
- абсолютной в диапазоне от 0,2 до 5 мм включ., мм	±0,2
- относительной в диапазоне св. 5 до 999,8 мм, %	±4

- *Пределы допускаемой основной погрешности нормированы при условии использования для градуировки и поверки газоанализатора поверочного нулевого газа с объемной долей определяемой примеси, не более, млн⁻¹:
 - $-H_2S-0.0005$ (генератор нулевого воздуха утвержденного типа);
 - NH₃ − 0,005 (генератор нулевого воздуха утвержденного типа);
- CO 0,1 (генератор нулевого воздуха утвержденного типа или азот OЧ1 по ГОСТ 9293-74 с изм. 1,2,3)

Таблица 6 – Основные технические характеристики

Таолица 0 — Основные технические характеристики	
Наименование характеристики	Значение
Время прогрева, ч, не более	3
Напряжение питания мобильной станции:	
- от сети переменного тока, при частоте от 49 до 51 Гц, В	от 207 до 253
- от комплекта гелиевых или свинцово-кислотных аккумуляторных	
батарей (8 шт.×12 В), В	96
- от бензогенератора инверторного при частоте от 49 до 51 Гц, В	220
Напряжение питания стационарной станции:	
- от сети переменного тока, при частоте от 49 до 51 Гц, В	от 207 до 253
Потребляемая мощность, В.А, не более	5000
Габаритные размеры стационарной станции, мм, не более:	
- длина	4600
- ширина	2500
- высота	2600
Габаритные размеры мобильной станции (без учёта кабины водителя), мм,	
не более:	
- длина	4490
- ширина	2300
- высота	1900
Масса, кг, не более	3800
Рабочие условия эксплуатации:	
- температура окружающего воздуха, °С	от -50 до +50
- относительная влажность воздуха при температуре +25 °C, %	от 30 до 100
- атмосферное давление, кПа	от 84,0 до 106,7
Условия эксплуатации внутри станции:	
- температура окружающего воздуха, °С	от +5 до +40
- относительная влажность воздуха (без конденсации влаги), %, не более	80
- атмосферное давление, кПа	от 84,0 до 106,7

Знак утверждения типа

наносится на корпус станции методом офсетной печати и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 7 – Комплектность станций

Наименование	Обозначение	Количество
Комплект газоанализаторов	-	1 компл.
Пылемер (в сборе)	-	1 шт.
Метеостанция (в сборе)	-	1 шт.
Система сбора и хранения данных	-	1 шт.
Разбавитель (только для стационарной		
станции)	-	1 шт.
Генератор газовых смесей (только для		
стационарной станции)	-	1 шт.
Генератор водорода (только для		
стационарной станции)	-	1 шт.
Генератор нулевого газа (только для		
стационарной станции)	-	1 шт.
Комплект ЗИП и ПГ. ПГС поставляется		
только для стационарной станции	-	1 шт.
Руководство по эксплуатации	НЕАГ.416300.713.РЭ	1 экз.
Методика поверки	651-19-009 MΠ	1 экз.
Руководство оператора	-	1 экз.

Примечание – Методики поверки на газоанализаторы, пылемер, метеостанцию, входящие в состав станции, предоставляются отдельно

Поверка

осуществляется по документу 651-19-009 МП «Станции контроля загрязнения атмосферного воздуха автоматические «ЧИСТЫЙ ВОЗДУХ-ПЛЮС». Методика поверки», утвержденному Φ ГУП «ВНИИ Φ ТРИ» 22.04.2019 г.

Основные средства поверки:

- средства поверки в соответствии с документами на поверку средств измерений, входящих в состав станции;
 - калибратор универсальный Fluke 9100 (регистрационный номер № 25985-09).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемой станции с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки или оттиска поверительного клейма.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к станциям контроля загрязнения атмосферного воздуха автоматическим «ЧИСТЫЙ ВОЗДУХ-ПЛЮС»

ГОСТ Р 50760-95 Анализаторы газов и аэрозолей для контроля атмосферного воздуха. Общие технические условия

ГОСТ Р 51945-2002 Аспираторы. Общие технические условия

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия

Приказ Росстандарта от 14.12.2018 г. № 2664 «Об утверждении государственной поверочной схемы для средств измерений содержания компонентов в газовых и газоконденсатных средах»

ГОСТ Р 8.606-2012 ГСИ. Государственная поверочная схема для средств измерений дисперсных параметров аэрозолей, взвесей и порошкообразных материалов

НЕАГ.416300.713ТУ Станция контроля загрязнения атмосферного воздуха автоматическая «ЧИСТЫЙ ВОЗДУХ-ПЛЮС». Технические условия

Изготовитель

Акционерное общество «НеваЛаб» (АО «НеваЛаб»)

ИНН 7810272943

Адрес: 196158, г. Санкт-Петербург, Московское шоссе, д. 46

Юридический адрес: 188643, Ленинградская область, г. Всеволожск, ул. Заводская, д. 8, пом. 9

Телефон: +7 (812) 336-3200, факс: +7 (812) 336-3223

Web-сайт:

E-mail: info@nevalab.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт физико-технических и радиотехнических измерений»

Адрес: 141570, Московская область, Солнечногорский район, город Солнечногорск, рабочий поселок Менделеево, промзона ВНИИФТРИ

Телефон (факс): +7 (495) 526-63-00

Web-сайт: <u>www.vniiftri.ru</u> E-mail: <u>office@vniiftri.ru</u>

Аттестат аккредитации Φ ГУП «ВНИИ Φ ТРИ» по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 11.05.2018 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «___ » _____ 2019 г.