Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии им. Д. И. Менделеева» ФГУП «ВНИИМ им. Д. И. Менделеева»

Утверждаю И.о директора

ФГУП «ВНИИМ им Д. И Менделеева»

А. Н. Пронин

М. п.

«02» апреля 2019 г.

Государственная система обеспечения единства измерений

СИСТЕМА АВТОМАТИЗИРОВАННАЯ СЕЙСМОМЕТРИЧЕСКОГО КОНТРОЛЯ ГТС ЧЕБОКСАРСКОЙ ГЭС

Методика поверки МП 253-0152-2019

Руководитель НИО А. А. Янковский

Заместитель руководителя НИО Д. Б. Пухов

г. Санкт-Петербург 2019 г.

Оглавление

введение	3
1 ОПЕРАЦИИ ПОВЕРКИ	4
2 СРЕДСТВА ПОВЕРКИ	4
3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	5
4 УСЛОВИЯ ПОВЕРКИ	5
5 ПРОВЕДЕНИЕ ПОВЕРКИ	5
5.1 Внешний осмотр, проверка комплектности и маркировки	5
5.2 Подтверждение соответствия программного обеспечения	5
5.3 Опробование	5
5.4 Определение приведённой погрешности измерений виброускорения в рабо	чем
диапазоне частот	6
5.5 Проверка диапазона измерений амплитуды виброускорения	8
6. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	8

ВВЕДЕНИЕ

1. Настоящая методика поверки распространяется на систему автоматизированную сейсмометрического контроля ГТС Чебоксарской ГЭС (далее по тексту — система), изготовленной обществом с ограниченной ответственностью «Научно-технический центр Специальных проектов» (ООО «НТЦ Спецпроект»), и устанавливает объём и порядок проведения поверки.

Интервал между поверками – 2 года.

- 2. Методикой поверки предусмотрена возможность проведения поверки отдельных измерительных каналов и (или) отдельных автономных блоков из состава средства измерений для меньшего числа измеряемых величин или на меньшем числе поддиапазонов измерений.
- 3. Перед началом работы необходимо ознакомиться с настоящей методикой поверки, эксплуатационной документацией на систему, средств измерений и оборудования, используемых при проведении поверки.

В тексте настоящей методики используются следующие сокращения:

- Система система автоматизированная сейсмометрического контроля ГТС Чебоксарской ГЭС;
- ЭД эксплуатационная документация системы автоматизированной сейсмометрического контроля ГТС Чебоксарской ГЭС;
- Виброустановка виброустановка калибровочная портативная моделей 9200D и 9210D. Рег.№60448-15. Диапазон рабочих частот от 0,7 до 2000 Гц, максимальное значение воспроизводимого виброускорения 19,6 м/с2, пределы допускаемой относительной погрешности воспроизведения виброускорения ±1 %:

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1 – Операции при проведении поверки

Наименование операции	Номер	Обязательност	ь проведения
	пункта	операции при поверке	
		Первичной	Периодической
1	2	3	4
Внешний осмотр, проверка	5.1	да	да
комплектности и маркировки			
Подтверждение соответствия	5.2	да	да
программного обеспечения			
Опробование	5.3	да	да
Определение приведённой	5.4	да	да
погрешности измерений			20.00
виброускорения и виброскорости в			
рабочем диапазоне частот			
Проверка диапазона измерений	5.5	да	да
виброускорения и виброскорости			
Оформление результатов поверки	6	да	да

2 СРЕДСТВА ПОВЕРКИ

При проведении поверки должны применяться средства измерений, указанные в таблице 2, имеющие свидетельства о поверке с неистекшим сроком действия.

Таблица 2 – Перечень средств измерений

	аслица 2— перечень средств измерении				
Номер пункта МП	Наименование средства поверки и его тип	Основные метрологические характеристики			
5.4 – 5.5	Генератор сигналов специальной формы Г6-37	Диапазон частот от 0,001 Гц до 20 МГц, относительная основная погрешность в диапазоне частот от 0,1 Гц до 100кГц δ=±2%, рег. № 10630-86			
5.4 – 5.5	Виброустановка калибровочная портативная моделей 9200D и 9210D	Диапазон рабочих частот от 0,7 до 2000 Гц, максимальное значение воспроизводимого виброускорения 19,6 м/с2, пределы допускаемой относительной погрешности воспроизведения виброускорения ±1 %. Рег.№60448-15			
5.4 – 5.5	Термогигрометр электронный CENTER модели 310	Диапазон измерений температуры от минус 20 до плюс 60, пределы допускаемой абсолютной погрешности результата измерений температуры ±0,7°С, пределы допускаемой абсолютной погрешности результата измерений относительной влажности ±3 %, рег. №22129-09			

Допускается применение других средств измерений, обеспечивающих требуемый запас точности (не менее 1/3), со свидетельствами о поверке с неистекшим сроком действия.

3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 3.1 При поверке должны соблюдаться правила безопасности в соответствии с указаниями, приведёнными в ЭД системы и применяемых средств поверки.
- 3.2 К поверке допускаются лица, изучившие эксплуатационную документацию систему и прошедшие инструктаж по технике безопасности.

4 УСЛОВИЯ ПОВЕРКИ

- 4.1 При проведении поверки должны быть соблюдены следующие условия: температура окружающего воздуха, °C от +15 до +25 относительная влажность воздуха при температуре 25 °C, % от 10 до 90
- 4.2 При подготовке к поверке средства поверки и вспомогательное оборудование должны быть подготовлены в соответствии с указаниями эксплуатационной документации.

5 ПРОВЕДЕНИЕ ПОВЕРКИ

5.1 Внешний осмотр, проверка комплектности и маркировки

При внешнем осмотре должно быть установлено отсутствие механических повреждений на корпусах составных частей системы.

При проверке комплектности должно быть установлено её соответствие перечню, приведённому в эксплуатационной документации на систему.

При проверке маркировки должно быть установлено наличие информационных табличек на корпусах составных частей системы.

- 5.2 Подтверждение соответствия программного обеспечения
 - 5.2.1 Подготовить систему к работе в соответствии с ЭД.
 - 5.2.2 Запустить программу регистрации «InManager».
- 5.2.3 Перейти на вкладку «Информация» и сличить идентификационные данные ПО, отобразившиеся в диалоговом окне, с данными, приведёнными в таблице 3.
 - 5.2.4 Запустить программу регистрации «PrgConfig».
- 5.2.5 Перейти на вкладку «Информация» и сличить идентификационные данные ПО, отобразившиеся в диалоговом окне, с данными, приведёнными в таблице 3.
 - 5.2.6 Войти в программу управления измерениями КЦЦРС.
- 5.2.7 Перейти на вкладку «Info» и сличить идентификационные данные ПО, отобразившиеся в диалоговом окне, с данными, приведёнными в таблице 4.

Таблица 3 – Идентификационные данные автономного ПО

Идентификационные признаки	Значе	ние
Идентификационное наименование ПО	PrgConfig	InManager
Номер версии (идентификационный номер) ПО,	5.2	2.0.3.0
не ниже		

Таблица 4 - Идентификационные данные встроенного ПО

Идентификационные признаки	Значение	
Идентификационное наименование ПО	ПО КЦЦРС-03 МОУВ	ПО КЦЦРС-03 МУИ
Номер версии (идентификационный номер) ПО, не ниже	2.3	3.3

Система автоматизированная сейсмометрического контроля ГТС Чебоксарской ГЭС считается прошедшей поверку по пункту 5.2, если наименование и версия ПО соответствуют идентификационным данным программного обеспечения, приведённым в таблицах 3 и 4.

5.3 Опробование

При проведении опробования должна быть установлена работоспособность системы.

- 5.3.1 Провести демонтаж первого сейсмоприёмника системы из настенного шкафа СМД-6 и установить его на виброустановку так, чтобы измерительная ось ОХ была параллельна вектору воспроизводимого ускорения.
 - 5.3.2 Задать на виброустановке колебания с частотой 10 Гц и амплитудой 1 м/с².
- 5.3.3 В режиме реального времени проконтролировать изменение сигнала на мониторе центрального пункта сбора информации.
 - 5.3.7 Выключить виброустановку.

Система автоматизированная сейсмометрического контроля ГТС Чебоксарской ГЭС считается прошедшей поверку по пункту 5.3, если установлена её работоспособность.

5.4 Определение приведённой погрешности измерений виброускорения и виброскорости в рабочем диапазоне частот

определении приведённой погрешности измерений амплитуд виброускорения и виброскорости в качестве источника задания колебаний используются генератор и виброустановка. При проведении первичной поверки в диапазоне частот от 0,3 до 1 Гц имитация виброускорения осуществляется при помощи генератора, а в диапазоне частот от 0,7 до 45 Гц виброускорение задаётся непосредственно на виброустановке. При проведении периодической поверки допускается проводить измерения только с использованием виброустановки в диапазоне частот от 1 до 45 Гц.

- 5.4.1 Провести демонтаж первого сейсмоприёмника системы из настенного шкафа СМД-6.
 - 5.4.2 Подключить генератор к калибровочному входу сейсмоприёмника.
 - 5.4.3 Установить на генераторе выходной сигнал со следующими параметрами:
 - форма сигнала

синусоида;

- амплитуда

6 B;

- частота

0,3 Гц.

Включить генератор.

- 5.4.4 Провести запись выходного сигнала сейсмоприёмника по всем каналам за время не менее 1 минуты. Определить значения амплитуд A_i^x и A_i^y виброускорения и амплитуд V_i^x , V_i^y и V_i^z виброскорости.
- 5.4.5 Рассчитать заданную амплитуду виброускорения и виброскорости по формулам:

$$A_i^{\text{3ad.}} = \frac{U_i^{\text{3ad.}}}{K_{\text{np.}}}$$

$$V_i^{\text{3ad.}} = \frac{A_i^{\text{3ad.}}}{2 \cdot \pi \cdot f}$$

$$(2)$$

$$V_i^{\text{3ad.}} = \frac{A_i^{\text{3ad.}}}{2 \cdot \pi \cdot f_i} \tag{2}$$

где:

 $K_{\rm np.}$ – коэффициент преобразования сейсмоприёмника (номинальное значение выбирается из паспорта на сейсмоприёмник), В-с2/м

Полученный результат занести в таблицу 5.

- 5.4.6 Выполнить операции пп. 5.4.3 5.4.5 для выходного сигнала с генератора со следующими параметрами:
 - форма сигнала

синусоида;

- амплитуда

6 B:

- частота

0.5 Гц

Результат измерений занести в таблицу 5.

- 5.4.7 Выключить генератор.
- 5.4.8 Установить первый сейсмоприёмник из состава системы на виброустановку так, чтобы его измерительная ось ОХ была параллельна вектору воспроизводимого ускорения.
 - 5.4.9 Включить виброустановку.
- 5.4.10 Установить значение параметров воспроизводимого ускорения в соответствии с таблицей 2 для частоты 0.7 Гц.
- 5.4.11 Провести измерение амплитуды A_i виброускорения. Полученный результат занести в таблицу 5.

Таблица 5 – Результаты измерений виброускорения, ось ОХ

$f_i^{ m \scriptscriptstyle 3AJ}$, Гц	$A_i^{3 a д.}, M/c^2$	$V_i^{\text{зад}}$, м/с	A_i^x , M/C^2	V_i^x , M/C	γ_i^{ax} , %	γ_i^{vx} , %
0,3	-					
0,5	-		V .			
1	0,1					
3	1		() ()			
5	1					
10	1,6					
20	1,6					
30	1,6					
45	1,6					

- 5.4.12 Выполнить операции пп. 5.4.9 -5.4.10 для всех последующих значений частот и амплитуд, приведённых в таблице 5.
- 5.4.13 По результатам измерений определить приведённую погрешность измерений виброускорения и виброскорости для оси ОХ первого сейсмоприёмника: $\gamma_i^{ax} = \frac{(A_i^{x} - A_i^{3a,L})}{A^M} \cdot 100 \ \%$ $\gamma_i^{vx} = \frac{(V_i^{x} - V_i^{3a,L})}{V^M} \cdot 100 \ \%$

$$\gamma_i^{ax} = \frac{(A_i^{x} - A_i^{3a\mu})}{A^{M}} \cdot 100 \%$$
 (3)

$$\gamma_i^{vx} = \frac{(V_i^{x.} - V_i^{3a,i.})}{V^{M}} \cdot 100 \%$$
 (4)

где A^{M} и V^{M} – максимальные значения амплитуд виброускорения и виброскорости соответственно.

- 5.4.14 Выполнит операции пп. 5.4.1 5.4.13 для измерительных осей сейсмоприёмника ОХ и ОZ.
- 5.4.15 Из всех полученных значений γ_i^{ax} , γ_i^{ay} и γ_i^{az} определить максимальные значения приведённой погрешности измерений виброускорения для первого сейсмоприёмника из условий:

$$\gamma_{f_1}^1 = \max(\gamma_i^{ax}, \gamma_i^{ay})$$
$$\gamma_{f_2}^1 = \max(\gamma_i^{ax}, \gamma_i^{ay})$$

- $\gamma_{f_1}^{\mathbf{1}}$ значение приведённой погрешности в диапазоне частот от 0,3 до 1 Гц включ.; $\gamma_{f_2}^{\widehat{\mathbf{1}}}$ - значение приведённой погрешности в диапазоне свыше 1 Гц.
- 5.3.16 Из всех полученных значений γ_i^{vx} , γ_i^{vy} и γ_i^{vz} определить максимальные значения приведённой погрешности измерений виброскорости для первого сейсмоприёмника из условия:

$$\gamma^1 = \max(\gamma_i^{vx}, \gamma_i^{vy}, \gamma_i^{vz})$$

5.4.17 Выполнить операции пунктов 5.3.1-5.3.16 для всех сейсмоприёмников системы.

5.4.18 Из всех полученных значений $\gamma_{f_1}^1$, $\gamma_{f_1}^2$, $\gamma_{f_1}^3$, $\gamma_{f_1}^4$, $\gamma_{f_1}^5$, $\gamma_{f_2}^6$ и $\gamma_{f_2}^1$, $\gamma_{f_2}^3$, $\gamma_{f_2}^4$, $\gamma_{f_2}^5$, $\gamma_{f_2}^5$, $\gamma_{f_2}^6$, $\gamma_{f_2}^6$, определить максимальные значения приведённой погрешности измерений виброускорения из условий:

$$\gamma_1 = \max(\gamma_{f_1}^1, \gamma_{f_1}^2, \gamma_{f_1}^3, \gamma_{f_1}^4, \gamma_{f_1}^5, \gamma_{f_1}^6)$$

$$\gamma_2 = \max(\gamma_{f_2}^1, \gamma_{f_2}^2, \gamma_{f_2}^3, \gamma_{f_2}^4, \gamma_{f_2}^5, \gamma_{f_2}^6)$$

5.4.19 Из всех полученных значений γ^1 , γ^2 , γ^3 , γ^4 , γ^5 , γ^6 и $\gamma_{f_2}^6$ определить максимальные значения приведённой погрешности измерений виброскорости из условий:

$$\gamma = \max(\gamma^1, \gamma^2, \gamma^3, \gamma^4, \gamma^5, \gamma^6, \gamma_{f_2}^6)$$

Система автоматизированная сейсмометрического контроля ГТС Чебоксарской ГЭС считается прошедшей поверку по пункту 5.4, если приведённые погрешности измерений виброускорения в рабочем диапазоне частот не более:

12 % в диапазоне частот от 0,3 до 1 Гц включ.

7 % в диапазоне частот Св.1 Гц до 45,

а приведённая погрешность измерений виброскорости не более 15%.

5.5 Проверка диапазона измерений виброускорения и виброскорости

- 5.5.1 Провести регистрацию сейсмического шума для каждого измерительного канала системы. Уровень сейсмического шума не должен превышать 0,002 м/с² для каналов, измеряющих ускорения, и 0,005 м/с для каналов, измеряющих скорость.
- 5.5.2 При выполнении требований пункта 5.4 за верхнее значение диапазона измерений виброускорения принять 1,6 м/с², а за верхнее значение диапазона измерений виброскорости 0,5 м/с.

Система автоматизированная сейсмометрического контроля ГТС Чебоксарской ГЭС считается прошедшей поверку по пункту 5.5, если диапазон измерений виброускорения составляет от 0,002 до 1,6 м/с², а диапазон измерений виброскорости составляет от 0,005 до 0,5 м/с.

6. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 6.1 При положительных результатах поверки, проведённой в соответствии с настоящей методикой, выдаётся свидетельство о поверке. Знак поверки наносится на Свидетельство о поверке.
- 6.2 При отрицательных результатах поверки система автоматизированная сейсмометрического контроля ГТС Чебоксарской ГЭС к применению не допускается и на неё оформляется извещение о непригодности.