Государственная корпорация по атомной энергии «Росатом» Федеральное государственное унитарное предприятие РОССИЙСКИЙ ФЕДЕРАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР

Всероссийский научно-исследовательский институт экспериментальной физики

ЦЕНТР ИСПЫТАНИЙ СРЕДСТВ ИЗМЕРЕНИЙ ФГУП «РФЯЦ-ВНИИЭФ»

Уникальный номер записи об аккредитации в реестре аккредитованных лиц RA.RU.311769

пр. Мира, д. 37, г. Саров, Нижегородская обл., 607188 Телефон 83130 22224 Факс 83130 22232 E-mail: nio30@olit.vniief.ru

СОГЛАСОВАНО

Руководитель ЦИ СИ ФГУ<u>П «РФ</u>ЯЦ-ВНИИЭФ»

В.К. Дарымов

M.n.

«30» 08 2021

Государственная система обеспечения единства измерений

ДАТЧИКИ ВИБРАЦИИ ДИВ-В

Методика поверки

КЛИЖ.402248.002 МП

Содержание

1	Общие положения	3
2	Перечень операций поверки	4
3	Требования к условиям проведения поверки	4
4	Требования к специалистам, осуществляющим поверку	5
5	Метрологические и технические требования к средствам поверки	5
6	Требования по обеспечению безопасности проведения поверки	5
7	Внешний осмотр	5
8	Подготовка к поверке и опробование	6
9	Проверка ПО	8
10	Определение метрологических характеристик	8
11	Подтверждение соответствия метрологическим требованиям	12
12	Оформление результатов поверки	12
Пр	иложение А (справочное) Перечень документов, на которые даны	
ССЕ	ылки в тексте МП	13
Пр	иложение Б (справочное) Перечень принятых сокращений	13
Пр	иложение В (справочное) Расчёт неравномерности ЧХ	. 14

1 Общие положения

Настоящая МП распространяется на датчики измерения вибрации ДИВ-В.

Датчики измерения вибрации ДИВ-В (далее – ДИВ-В) предназначены для измерений мгновенных и СКЗ виброскорости и виброускорения.

Принцип действия ДИВ-В основан на непрерывном преобразовании механических колебаний элементов конструкции контролируемого агрегата в местах установки ДИВ-В в унифицированные электрические и дискретные сигналы.

ДИВ-В состоит из преобразователя нормирующего (ПН) и первичного вибропреобразователя (ВП). В качестве ВП применяется акселерометр 1C202HA-5 или 1C201HA-5, отличающиеся способом крепления к объекту контроля. В ДИВ-В реализованы унифицированный токовый выход от 4 до 20 мА, выход по напряжению от 0 до 5 В, интерфейсный выход RS-485 и два дискретных выхода типа «сухой контакт».

Конструктивно ПН выполнен в металлическом сборном корпусе и выпускается во взрывобезопасном исполнении. ДИВ-В выпускается в двух модификациях, отличающихся типом применяемого акселерометра.

Питание ДИВ-В осуществляется от источника напряжения постоянного тока от 18 до 36 В, ток потребления не более 100 мА.

Поверяемые средства измерений прослеживаются к государственному первичному эталону в соответствии с ГПС, утверждённой приказом Росстандарта от 27 декабря 2018 г.

МП устанавливает методику первичной и периодической поверок ДИВ-В. Первичной поверке ДИВ-В подвергаются при выпуске из производства. Внеочередную поверку в объеме периодической проводят после перенастройки преобразователя нормирующего. Организация и проведение поверки в соответствии с действующими нормативными документами.

МП не предусматривает поверку ДИВ-В в сокращённом объёме.

Межповерочный интервал – 2 года.

Перечень документов, на которые даны ссылки в тексте МП, приведен в приложении А.

Перечень принятых сокращений приведен в приложении Б.

2 Перечень операций поверки

- 2.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.
- 2.2 При получении отрицательного результата какой-либо операции поверки дальнейшая поверка не проводится, и результаты оформляются в соответствии с 11.2.

Таблица 1 – Перечень операций при поверке

Таолица т - перечень операции при поверке		0.5	7	
	Номер	Обязательность проведения		
Наименование операции	пункта	при поверке		
	МΠ	первич- ной	периоди- ческой	
1 Внешний осмотр	7	Да	Да	
2 Подготовка к поверке и опробование	8	Да	Да	
3 Проверка ПО	9	Да	Да	
4 Проверка рабочего диапазона измерений виброскорости, коэффициента преобразования и основной относительной погрешности	10.1	Да	Да	
5 Проверка рабочего диапазона измерений виброускорения, коэффициента преобразования и основной относительной погрешности	10.2	Да	Да	
6 Проверка рабочего диапазона частот и пределов допускаемого отклонения коэффициента преобразования относительно коэффициента преобразования на частоте 159,2 Гц	10.3	Да	Да	

Примечания

- 1 Проверки проводятся в режиме измерений (СКЗ или амплитуда), указанном в обозначении ДИВ-В для предустановленного измеряемого параметра вибрации.
- 2 При отсутствии в обозначении ДИВ-В максимального значения диапазона измерений для непредустановленного параметра вибрации, проверки для этой величины вибрации (виброскорости или виброускорения) не проводятся. Пример обозначения ДИВ-В приведен в 1.1 КЛИЖ.402248.002РЭ.

3 Требования к условиям проведения поверки

При проведении поверки должны быть соблюдены следующие условия:

- температура окружающего воздуха от 18 до 25 °C;
- относительная влажность окружающего воздуха не более 80 %;
- атмосферное давление от 84 до 106 кПа (от 630 до 795 мм рт.ст.);
- напряжение питающей сети от 207 до 253 В;
- частота питающей сети от 49,5 до 50,5 Гц.

4 Требования к специалистам, осуществляющим поверку

К проведению поверки допускается персонал, изучивший ЭД на ДИВ-В, данную МП и имеющий опыт работы с оборудованием, перечисленным в таблице 2.

5 Метрологические и технические требования к средствам поверки

- 5.1 При проведении поверки применяют СИ и оборудование, приведенные в таблице 2.
- 5.2 Допускается использовать другие СИ и оборудование, обеспечивающие требуемые диапазоны и точности измерений.
- 5.3 Все применяемые СИ должны быть поверены в соответствии с действующими нормативными документами и иметь действующие свидетельства о поверке.

Таблица 2 – Перечень СИ и оборудования, применяемых при поверке

Наименование	Требуемые хар	актеристики	Рекомендуемый	Кол-	Пункт
СИ	Диапазон измерений	Погрешность измерений	тип	ВО	МП
Виброустановка поверочная 2-го разряда по ГПС	от 10 до 2500 Гц; 100 мм/с; 200 м/с ²	±2,0 %	DVC-500 (per. № 58770-14)	1	все
Источник питания постоянного тока	от 18 до 36 В; не менее100 мА	±2,0 %	PSP-405 (per. № 25347-11)	1	все
Миллиамперметр	от 2 до 30 мА	±0,2 %	34410A	1	
Вольтметр	от 1 мВ 10 В, от 10 до 10000 Гц	±0,2 %	(per. № 47717-11)	1	все
Персональный компьютер	В соответстви 643.376	1	все		

6 Требования по обеспечению безопасности проведения поверки

- 6.1 При проведении поверки необходимо руководствоваться «Правила технической эксплуатации электроустановок потребителей» и «Правила по охране труда при эксплуатации электроустановок». Меры безопасности при подготовке и проведении измерений должны соответствовать требованиям ГОСТ 12.2.007.0.
- 6.2 При проведении поверки должны быть выполнены все требования безопасности, указанные в ЭД на ДИВ-В, средства поверки и испытательное оборудование.

Все операции по монтажу и демонтажу аппаратуры должны производиться при отключенном питании преобразователя нормирующего.

Все используемое оборудование должно иметь защитное заземление.

7 Внешний осмотр

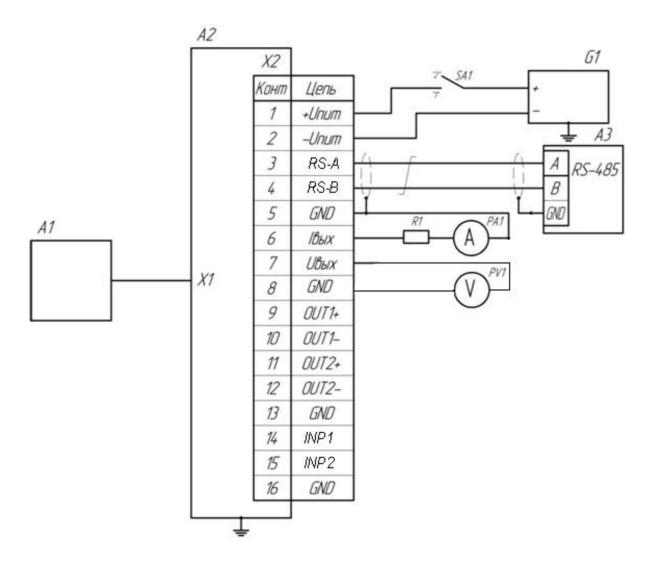
- 7.1 При внешнем осмотре необходимо установить:
- комплектность изделия в соответствии с ФО;
- соответствие маркировки изделия требованиям ЭД;
- соответствие заводского номера данным, приведенным в ФО;
- наличие и целостность защитных пломб-этикеток предотвращающей не-санкционированный доступ к элементам регулировки ДИВ-В;

- отсутствие механических повреждений корпусов, органов управления, соединительных жгутов и разъёмов.
- 7.2 При наличии вышеуказанных дефектов испытания не проводят до их устранения. Если дефекты устранить невозможно, ДИВ-В бракуют. При отсутствии или нарушении целостности пломбы-этикетки, предотвращающей несанкционированный доступ к элементам регулировки, ДИВ-В подлежит поверке в объеме первичной поверки.

8 Подготовка к поверке и опробование

- 8.1 Подготовка к поверке
- 8.1.1 Перед проведением поверки подготавливают СИ и оборудование к работе в соответствии с ЭД на них, обеспечив выполнение требований техники безопасности.
- 8.1.2 Проверяют наличие действующих свидетельств о поверке на СИ, а также соответствие условий поверки разделу 3.
- 8.1.3 Устанавливают программное обеспечение для работы с ДИВ-В (пользовательскую программу «User DIV»). Установка пользовательской программы на персональный компьютер производиться с компакт-диска КЛИЖ.467371.006, входящего в комплект поставки. Порядок установки указан в руководстве оператора 643.37627780.00003-01 34 01.

8.2 Опробование


8.2.1 Собирают схему измерений в соответствии с рисунком 1. Закрепляют ВП на столе виброустановки так, чтобы направление воздействия вибрации совпадало с измерительной осью ВП.

Устанавливают тумблер SA1 в положение «2».

Устанавливают на источнике питания G1 напряжение $(24,0\pm0,5)$ B, ограничение выходного тока 200 мА.

Устанавливают прибор PA1 в режим измерений силы постоянного тока до 20 мA, PV1 – в режим измерений напряжения переменного тока.

- 8.2.2 Переводят тумблер SA1 в положение «2» и подают напряжение питания на ПН.
- 8.2.3 Запускают пользовательскую программу и устанавливают адрес порта, адрес преобразователя измерительного (при выпуске с производства установлен адрес 01), скорость обмена 9600 бит/с, режим измерения СКЗ виброскорости.
- 8.2.4 Запускают заполнение буфера мгновенных значений с помощью пользовательской программы
- 8.2.5 На частоте 159,2 Гц воспроизводят СКЗ (амплитуду) виброскорости в диапазоне от $0.05 \cdot V_{\text{max}}$ до $0.5 \cdot V_{\text{max}}$, где V_{max} верхнее значение установленного диапазона измерений виброскорости, мм/с, указанное в формуляре на поверяемый ДИВ-В.
- 8.2.6 ДИВ-В считают прошедшим опробование с положительным результатом, если наблюдается изменение показаний PA1, PV1, и значений цифрового кода в окне пользовательской программы.

- А1 первичный преобразователь (ВП);
- А2 преобразователь нормирующий (ПН);
- ПК персональный компьютер с интерфейсом RS-485;
- PA1 миллиамперметр постоянного тока (например, мультиметр цифровой 34410A в режиме измерений силы постоянного тока);
- PV1 вольтметр переменного тока (например, мультиметр цифровой 34410A в режиме измерений напряжения переменного тока);
- R1 резистор 510 Ом (например, C2-33H-0,125-510 Ом \pm 5% Д-В ОЖО.467.093ТУ).

Примечания

- 1 Использовать соединительные провода любой стандартной марки сечением не менее $0,14~{\rm mm}^2$, длиной до $1,5~{\rm m}$ (кроме витой пары).
- 2 Для соединения ПН и ПК использовать экранированную витую пару (например, КИПЭВ(П) ТУ 16.К99-008-01).

Рисунок 1 – Схема измерений

9 Проверка ПО

- 9.1 Номер версии и цифровой идентификатор ПО поверяемого ДИВ-В отображаются в соответствующих полях «Версия ПО» и «СRС» окна «Настройка ДИВ» пользовательской программы.
- 9.2 ДИВ-В считают прошедшим проверку с положительным результатом, если цифровой идентификатор ПО (контрольная сумма исполняемого кода) соответствует указанному в ЭД.

10 Определение метрологических характеристик

- 10.1 Проверка рабочего диапазона измерений виброскорости, коэффициента преобразования и основной относительной погрешности
- 10.1.1 Собирают схему измерений в соответствии с рисунком 1. На источнике питания устанавливают напряжение ($24,0\pm0,5$) В, ограничение выходного тока 200 мА. Закрепляют ВП на столе виброустановки так, чтобы направление воздействия вибрации совпадало с измерительной осью датчика. Включают и прогревают все приборы в соответствии с ЭД на них. На ПК запускают пользовательскую программу и устанавливают режим измерений СКЗ (амплитуды) виброскорости, режим слежения и окно «Тренд», отключают фильтры.
- 10.1.2 На частоте 159,2 Гц воспроизводят первое рекомендуемое значение виброскорости (СКЗ для режима измерения СКЗ виброскорости или амплитуды для режима измерения амплитуды виброскорости) V_{pek} , мм/с, из таблицы 3. Считывают значения цифрового кода (по тренду) и показания PA1 и PV1.
- 10.1.3 Повторяют измерения по 10.2 для всех рекомендуемых значений виброскорости $V_{pe\kappa}$, мм/с, из таблицы 3.

Таблица 3

$V_{pe\kappa}$, MM/c	$0,05 \cdot V_{max}$	$0,2 \cdot V_{max}$	$0,4 \cdot V_{max}$	$0,6 \cdot V_{max}$	$0.8 \cdot V_{max}$	V_{max}
$V_{3a\partial.}$, MM/c						
$N_{e\omega x}$, ед						
V_{Ni} , MM/c						
$\delta_{ m Ni}$, %						
I_{eblx} , MA						
V_{Ii} , mm/c						
$\delta_{ ext{li}}, \%$						
$U_{eыx}$, мВ						
V_{Ui} , mm/c						
$\delta_{ ext{Ui}}$, %						

10.1.4 Значение измеренной виброскорости и относительной погрешности измерений для каждого выхода вычисляют по формулам в соответствии с таблицей 4.

Таблица 4

Пополють	Выходы преобразователя нормирующего						
Параметр	цифрового кода постоянного тока		цифрового кода постоянного тока напряжен		напряжения		
Измеряемый	N .	I = -4	U .				
параметр – вибро-	$V_{Ni} = \frac{I V_{6blx.i}}{V}$	$V_{Ii} = \frac{I_{ebix.i} - 4}{V}$	$V_{Ui} = \frac{O_{6blx.i}}{V}$				
скорость, мм/с	$oldsymbol{\Lambda}_{NV}$	$oldsymbol{\Lambda}_{IV}$	$oldsymbol{\Lambda}_{UV}$				
Относительная по-	$(V_{-}-V_{-})$	$(V_{-}-V_{-})$	$(V_{-}, -V_{-})$				
грешность измере-	$\delta_{Ni} = \frac{(V_{Ni} - V_{sad})}{V} \cdot 100$	$\delta_{li} = \frac{(V_{li} - V_{3a\partial})}{V} \cdot 100$	$\delta_{Ui} = \frac{(V_{Ui} - V_{3a\partial})}{V} \cdot 100$				
ний, %	зад	^V за∂	у зад 				

где K_{NV} =4095/ V_{max} – номинальное значения коэффициента преобразования при измерении СКЗ (амплитуды) виброскорости по выходу цифрового кода, ед./(мм·с⁻¹);

 K_{IV} =16/ $V_{\rm max}$ – номинальное значения коэффициента преобразования при измерении СКЗ (амплитуды) виброскорости по выходу постоянного тока, мА/(мм·с⁻¹);

 K_{UV} =1000/ $V_{\rm max}$ – номинальное значения коэффициента преобразования при измерении СКЗ (амплитуды) виброскорости по выходу напряжения, мВ/(мм·с⁻¹);

 $V_{\rm max}$ - верхнее значение установленного диапазона измерений виброскорости, мм/с, указанное в формуляре на поверяемый ДИВ-В

- 10.1.5 ДИВ-В считают прошедшим проверку с положительным результатом, если основная относительная погрешность в рабочем диапазоне измерений виброскорости на базовой частоте 159,2 Γ ц находится в пределах ± 5 %.
- 10.2 Проверка рабочего диапазона измерений виброускорения, коэффициента преобразования и основной относительной погрешности
- 10.2.1 Выполняют 10.1.1. На ПК запускают пользовательскую программу и устанавливают режим измерений СКЗ (амплитуды) виброускорения, режим слежения и окно «Тренд», отключают фильтры.
- 10.2.2 На частоте 159,2 Гц воспроизводят первое рекомендуемое значение виброскорости (СКЗ для режима измерения СКЗ виброускорения или амплитуды для режима измерения амплитуды виброускорения) V_{per} , мм/с, из таблицы 3. Считывают значения цифрового кода (по тренду) и показания PA1 и PV1.

Таблипа 5

$a_{pe\kappa}$, M/c^2	$0,05 \cdot a_{max}$	$0,2 \cdot a_{max}$	$0,4 \cdot a_{max}$	$0,6 \cdot a_{max}$	$0.8 \cdot a_{max}$	a_{max}
$a_{pe\kappa}, \text{M/c}^2$ $a_{3a\partial.}, \text{M/c}^2$						
N_{ebix} , ед						
a_{Ni} , M/c^2						
$\delta_{ m Ni}$, %						
I_{eblx} , MA						
a_{Ii} , M/c^2						
$\delta_{ ext{Ii}}, \%$						
$U_{eыx}$, мВ						
a_{Ui} , M/c^2						
$\delta_{ ext{Ui}}$, %						

10.2.3 Повторяют измерения по 10.2.2 для всех рекомендуемых значений виброускорения $a_{pe\kappa}$, м/с², из таблицы 5.

10.2.4 Значение измеренного виброускорения и относительной погрешности измерений для каждого выхода вычисляют по формулам в соответствии с таблицей 6.

Таблица 6

Попометр	Выходы преобразователя нормирующего						
Параметр	цифрового кода	постоянного тока	напряжения				
Измеряемый	N_{\cdots} .	I 4	<i>U</i>				
параметр – вибро- ускорение, m/c^2	$a_{Ni} = \frac{1}{V} \frac{eblx.i}{V}$	$a_{Ii} = \frac{I_{6bix.i} - 4}{V}$	$a_{Ui} = \frac{O_{eblx.i}}{V}$				
ускорение, M/c^2	$\mathbf{\Lambda}_{Na}$	$oldsymbol{\kappa}_{Ia}$	$oldsymbol{\kappa}_{Ua}$				
Относительная по-	$(a_{\cdots}-a_{-})$	(a - a)	$(a_{-}, -a_{-})$				
грешность измере-	$\delta_{Ni} = \frac{(a_{Ni} - a_{3a\delta})}{a} \cdot 100$	$\delta_{Ii} = \frac{(a_{Ii} - a_{3a\delta})}{2} \cdot 100$	$\delta_{Ui} = \frac{(a_{Ui} - a_{3ab})}{a} \cdot 100$				
ний, %	$a_{_{3a\partial}}$	$a_{_{3a\partial}}$	$a_{_{aa\delta}}$				

где K_{Na} =4095/ a_{max} – номинальное значения коэффициента преобразования при измерении СКЗ (амплитуды) виброускорения по выходу цифрового кода, ед./(м·c⁻²);

 K_{Ia} =16/ $a_{\rm max}$ – номинальное значения коэффициента преобразования при измерении СКЗ (амплитуды) виброускорения по выходу постоянного тока, мА/(м·c⁻²);

 K_{Ua} =1000/ $a_{\rm max}$ – номинальное значения коэффициента преобразования при измерении СКЗ (амплитуды) виброускорения по выходу напряжения, мВ/(м·c⁻²);

 $a_{\rm max}$ - верхнее значение установленного диапазона измерений виброускорения, м/c², указанное в формуляре на поверяемый ДИВ-В

- 10.2.5 ДИВ-В считают прошедшим проверку с положительным результатом, если основная относительная погрешность в рабочем диапазоне измерений виброускорения на базовой частоте 159,2 Γ ц находится в пределах ± 5 %.
- 10.3 Проверка рабочего диапазона частот и пределов допускаемого отклонения коэффициента преобразования относительно коэффициента преобразования на частоте 159,2 Гц
- 10.3.1 Выполняют 10.1.1. На ПК запускают пользовательскую программу и устанавливают режим измерений виброскорости, режим слежения и окно «Тренд», отключают фильтры.
- 10.3.2 На частоте 159,2 Гц воспроизводят значение виброскорости не менее 10 мм/с (рекомендуемое значение $0,6 \cdot V_{max}$). Считывают значения цифрового кода (по тренду) и показания PA1 и PV1.
- 10.3.3 Повторяют измерения по 10.3.2 для всех рекомендуемых частот из таблицы 7.
- 10.3.4 Отклонения коэффициента преобразования относительно коэффициента преобразования на частоте 159,2 Гц (неравномерность частотной характеристики) $\gamma_{\text{ачх}i}$, %, для каждого выхода вычисляют по формулам

$$\gamma_{avxNi} = \frac{N_i - N_{160}}{N_{160}} \cdot 100, \tag{1}$$

где N_i – измеренное значение цифрового кода на i-ой частоте, ед;

 N_{160} – измеренное значение цифрового кода на частоте 159,2 Γ ц, ед.

$$\gamma_{avxli} = \frac{I_i - I_{160}}{I_{160} - 4} \cdot 100, \qquad (2)$$

где I_i — измеренное значение силы постоянного тока на i-ой частоте, мА; I_{160} — измеренное значение силы постоянного тока на частоте 159,2 Γ ц, ед.

$$\gamma_{avxUi} = \frac{U_i - U_{160}}{U_{160}} \cdot 100, \tag{3}$$

где U_i — измеренное значение переменного напряжения на i-ой частоте, мВ; U_{160} — измеренное значение переменного напряжения на частоте 159,2 Гц, В.

Таблица 7

1 0001111111111111111111111111111111111											
$F_{ extit{peк.}}$, Γ ц	10	20	40	80	159,2	320	500	1000	1200	2000	2500
$V_{3a\partial.}$, MM/c											
$N_{eыx}$, ед											
γ _{aчxNi} , %											
I_{ebix} , MA											
γ_{auxli} , %											
$U_{вых}$, мВ											
$\gamma_{a u x U i}, \%$											

10.3.5 Включают фильтр ФНЧ ($1000\ \Gamma$ ц) и повторяют операции по 10.3.2-10.3.4 для всех рекомендуемых частот из таблицы 7 (кроме $2000\ и\ 2500\ \Gamma$ ц) по цифровому и токовому выходу выходам.

Примечания

- 1 Фильтрация сигнала по выходу напряжения не производится.
- 2 При периодической поверке допускается не проводить измерений по 10.3.5 если фильтр ФНЧ ($1000\ \Gamma$ ц) не используется, и наоборот, проводить измерения только по 10.3.5 если фильтр ФНЧ ($1000\ \Gamma$ ц) используется постоянно.
- 10.3.6 Повторяют операции по 10.3.1 10.3.5 для режима измерений виброускорения.
- 10.3.7 ДИВ-В считают выдержавшим испытания, если отклонения коэффициента преобразования относительно коэффициента преобразования на частоте 159,2 Гц находится в пределах:
 - фильтр низких частот (1000 Гц) выключен:
 - от минус 18 до минус 42 % на частотах частот от 10 и 2500 Гц;
 - $-\pm 9$ % в диапазоне частот от 20 Гц до 2000 Гц включительно;
 - фильтр низких частот (1000 Гц) включен:
 - от минус 18 до минус 42 % на частотах частот от 10 и 1200 Гц;
 - $-\pm 9$ % в диапазоне частот от 20 Гц до 1000 Гц включительно.

11 Подтверждение соответствия метрологическим требованиям

При подтверждении соответствия ДИВ-В метрологическим требованиям руководствуются процедурами, описанными в разделе 10.

ДИВ-В считают соответствующим метрологическим требованиям при положительных результатах испытаний, установленных в пунктах 10.1, 10.2, 10.3.

12 Оформление результатов поверки

- 12.1 Оформление результатов поверки проводят в соответствии с действующими нормативными документами. Протокол поверки оформляют в произвольной форме с учётом требований системы менеджмента качества организации, проводившей поверку.
- 12.2 При положительных результатах поверки при необходимости оформляют свидетельство о поверке по форме, установленной в действующих нормативных документах.

Знак поверки наносится на свидетельство о поверке и (или) формуляр.

12.3 СИ, не прошедшее поверку, к применению не допускают. На него выдают извещение о непригодности по форме, установленной в действующих нормативных документах.

Ведущий-инженер исследователь отдела ЦИ СИ ФГУП «РФЯЦ-ВНИИЭФ»

Д.В. Зверев

Инженер ООО «НПО САРОВ-ВОЛГОГАЗ»

М.А. Балуев

Приложение А (справочное) Перечень документов, на которые даны ссылки в тексте МП

Обозначение документа, на который дана ссылка	Наименование документа, на который дана ссылка
ΓΟCT 12.2.007.0-75	ССБТ. Изделия электротехнические. Общие требования
	безопасности
Приказ Росстандарта	Об утверждении государственной поверочной схемы
от 27 декабря 2018 г.	для средств измерений виброперемещения, виброско-
№ 2772	рости, виброускорения и углового ускорения
	Правила технической эксплуатации электроустановок потребителей (утверждены приказом Минэнерго РФ от 13.01.2003 г. № 6)
	Правила по охране труда при эксплуатации электроуста-
	новок (утверждены приказом Министерства труда и соци-
	альной защиты РФ от 15 декабря 2020 г. № 903н)

Приложение Б (справочное) Перечень принятых сокращений

ДИВ-В – датчик измерения вибрации;

МП – методика поверки;

ПО – программное обеспечение;

ВП – вибропреобразователь первичный;

 $\Pi H-$ преобразователь нормирующий;

СИ – средство(а) измерений;

ЭД – эксплуатационная документация;

АЧХ – амплитудно-частотная характеристика;

СКЗ – среднее квадратическое значение.

Приложение В (справочное) Расчет неравномерности ЧХ

В.1 В случае, если поверочная виброустановка не обеспечивает рекомендуемое значение воспроизводимой виброскорости (виброускорения) постоянным в требуемом частотном диапазоне, допускается значение виброскорости (виброускорения) устанавливать исходя из возможностей применяемых средств поверки.

Неравномерность АЧХ $\delta_{A^{\prime}X_{i}}$, %, в этом случае вычисляют по формуле

$$\delta_{A^{UXi}} = \left(\frac{V_{6bX.i}}{V_{ex.i}} \cdot \frac{V_{ex.160\Gamma_{ij}}}{V_{ebix.160\Gamma_{ij}}} - 1\right) \cdot 100, \tag{B.1}$$

где $V_{6blx,i}$ - значение измеренного ДИВ-В виброскорости (виброускорения) на *i*-ой частоте, мм/с (м/с²);

 $V_{ex.i}$ - значение воспроизводимого поверочной виброустановкой виброскорости (виброускорения) на *i*-ой частоте, мм/с (м/с²);

 $V_{ex.160\Gamma\mu}$ - значение воспроизводимого на базовой частоте 159,2 Гц поверочной виброустановкой виброскорости (виброускорения), мм/с (м/с²);

 $V_{\rm GbLX,160\Gamma y}$ - значение измеренного ДИВ-В на базовой частоте 159,2 Γ ц виброскорости (виброускорения), мм/с (м/с²).

Значения измеренного ДИВ-В виброскорости на *i*-ой частоте вычисляют по формулам в соответствии с таблицей 4.

Значения измеренного ДИВ-В виброускорения на *i*-ой частоте вычисляют по формулам в соответствии с таблицей 6.