УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «8» апреля 2022 г. № 921

Регистрационный № 85202-22

Лист № 1 Всего листов 10

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Газоанализаторы Falco

Назначение средства измерений

Газоанализаторы Falco (далее — газоанализаторы) предназначены для непрерывного измерения объемной доли или массовой концентраций летучих органических соединений, токсичных газов и паров в воздухе рабочей зоны.

Описание средства измерений

К настоящему типу средства измерений относятся газоанализаторы следующих модификаций Falco 1.1 и Falco 1.2, которые отличаются друг от друга способом отбора пробы.

Принцип действия газоанализаторов фотоионизационный, основан на ионизации молекул органических и неорганических веществ с энергий ионизации до 10,6 эВ.

Газоанализаторы представляют собой стационарные автоматические приборы непрерывного действия.

Конструктивно газоанализаторы выполнены из металлического основного корпуса, в котором расположены плата искробезопасности, плата управления, плата дисплея, передней крышки корпуса с прозрачным смотровым окном, а также головки сенсора с фотоионизационным сенсором, расположенной снаружи основного корпуса и прикрепленной к нему резьбовым соединением. Передняя крышка соединяется с корпусом с помощью дюймовой резьбы. Газоанализаторы имеют пять электромагнитных переключателей (кнопок) со светодиодным подтверждением, обеспечивающих быструю и простую установку параметров и обслуживание, высококонтрастный ОLED-экран и графический интерфейс. Магнитные переключатели работают с магнитным приводом (ключом), который обеспечивает действия: «вверх», «вниз», «влево», «вправо» и «ввод».

Газоанализаторы могут использоваться в составе газоаналитических систем, систем автоматизации или в качестве самостоятельных изделий.

Способы отбора пробы:

- модификация Falco 1.1 диффузионный;
- модификация Falco 1.2 принудительный (за счет встроенного насоса).

Газоанализаторы имеют возможность настройки времени цикла измерений от непрерывного до 10 минут с шагом 1 минута.

Газоанализаторы обеспечивают выполнение следующих функций:

- измерение массовой концентрации и (или) объемной доли токсичных газов и паров органических соединений в смеси с воздухом, контроль предельно допустимых концентраций (ПДК) (по ГОСТ 12.1.005-88);
 - передачу унифицированного токового сигнала от 4 до 20 мА;
- передачу цифровых сигналов по протоколам RS-485 (MODBUS), HART (по запросу);

Дополнительно газоанализаторы имеют два программируемых реле.

Нанесение знака поверки на средство измерений не предусмотрено.

Серийные номера в виде цифрового обозначения, состоящие из арабских цифр, наносятся лазерной гравировкой на маркировочную таблицу в месте, указанной на рисунке 1.

Общий вид газоанализаторов, а также место и метод пломбирования от несанкционированного доступа представлены на рисунке 1 и 2.

Рисунок 1 — Общий вид газоанализаторов Falco мод. Falco 1.1

Рисунок 2 – Общий вид газоанализаторов Falco мод. Falco 1.2

Программное обеспечение

Газоанализаторы имеют встроенное, метрологически значимое программное обеспечение (ПО), предназначенное для обработки измерительной информации. Данное ПО устанавливается в газоанализаторы на заводе-изготовителе во время производственного цикла, что исключает возможность несанкционированных настроек и вмешательства, приводящих к искажению результатов измерений.

Уровень защиты встроенного ПО - «высокий» в соответствии с Р 50.2.077-2014. Метрологически значимая часть ПО СИ и измеренные данные достаточно защищены с помощью специальных средств защиты от преднамеренных изменений.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Встроенное ПО
Номер версии (идентификационный номер) ПО, не ниже	2.1 d
Цифровой идентификатор ПО	-

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

Определяемый компонент ¹⁾	Диапазон измерений определяемого компонента ²⁾		Пределы допускаемой основной погрешности		Разрешающая способность	
			абсолютная	относительная	СПОСООНОСТЬ	
A (C II O)	от 0 до 50 млн ⁻¹	от 0 до 5 млн $^{-1}$ включ.	$\pm 0,75 \; \text{млн}^{-1}$	-	0.01	
Ацетальдегид (С ₂ Н ₄ О)	от о до зо млн	св. 5 до 50 млн ⁻¹	-	±15 %	0,01 млн ⁻¹	
Assertant (C.H.O)		от 0 до 100 млн ⁻¹ включ.	±20 млн ⁻¹	-	0.1	
Ацетон (C ₃ H ₆ O)	от 0 до 1000 млн ⁻¹	св. 100 до 1000 млн ⁻¹		±20 %	0,1 млн ⁻¹	
A (NIII)	0 10001	от 0 до 50 млн ⁻¹ включ.	±7,5 млн ⁻¹	-	0.1	
Аммиак (NH ₃)	от 0 до 1000 млн ⁻¹	св. 50 до 1000 млн ⁻¹	-	±15 %	0,1 млн ⁻¹	
Г(С.И.)	0 101	от 0 до 4,6 млн ⁻¹ включ.	$\pm 0,7$ млн ⁻¹	-	0.0011	
Бензол (C_6H_6)	от 0 до 10 млн ⁻¹	св. 4,6 до 10 млн ⁻¹	-	±15 %	0,001 млн ⁻¹	
1.2 5 (C.H.)	a= 0 == 1000 ar====1	от 0 до 100 млн ⁻¹ включ.	±15 млн ⁻¹	-	0,1 млн ⁻¹	
1,3-бутадиен (C ₄ H ₆)	от 0 до 1000 млн ⁻¹	св. 100 до 1000 млн ⁻¹	-	±15 %		
Г (С. И. О.)	010001	от 0 до 20 млн ⁻¹ включ.	±3 млн ⁻¹	-	0.11	
Бутилацетат ($C_6H_{12}O_2$)	от 0 до 1000 млн ⁻¹	св. 20 до 1000 млн ⁻¹	-	±15 %	$0,1{ m MJH}^{-1}$	
П (С. И.)	05001	от 0 до 100 млн ⁻¹ включ.	±15 млн ⁻¹	-	0.11	
Декан (C ₁₀ H ₂₂)	от 0 до 500 млн ⁻¹	св. 100 до 500 млн ⁻¹	-	±15 %	0,1 млн ⁻¹	
The comment of the Court of		от 0 до 20 млн ⁻¹ включ.	±4 млн ⁻¹	-	0.1	
Диметилдисульфид ($C_2H_6S_2$)	от 0 до 1000 млн ⁻¹	св. 20 до 1000 млн ⁻¹	-	±20 %	0,1 млн ⁻¹	
П	a= 0 == 1000 ar====1	от 0 до 200 млн ⁻¹ включ.	±30 млн ⁻¹	-	0.1	
Диметиловый эфир (C_2H_6O)	от 0 до 1000 млн ⁻¹	св. 200 до 1000 млн ⁻¹	-	±15 %	0,1 млн ⁻¹	
П	0501	от 0 до 5 млн $^{-1}$ включ.	$\pm 0,75 \; \text{млн}^{-1}$	-	0.01 мж-1	
Диметилформамид (C ₃ H ₇ NO)	от 0 до 50 млн ⁻¹	св. 5 до 50 млн ⁻¹	-	±15 %	0,01 млн ⁻¹	

Определяемый компонент ¹⁾	Диапазон измерений определяемого компонента ²⁾		-	допускаемой погрешности	Разрешающая	
			абсолютная	относительная	способность	
Этилацетат (С ₄ H ₈ O ₂)	от 0 до 1000 млн ⁻¹	от 0 до 20 млн ⁻¹ включ.	±4 млн ⁻¹	-	0,1 млн ⁻¹	
Этилацетат (С4118О2)	01 0 до 1000 млн	св. 20 до 1000 млн ⁻¹	-	±20 %	U,1 MJIH	
Этантиол (C_2H_5SH)	от 0 до 10 млн ⁻¹	от 0 до $0,4$ млн $^{-1}$ включ.	$\pm 0,08$ млн ⁻¹	-	0,001 млн ⁻¹	
Утантиол (С2П5 УП)	от о до то млн	св. 0,4 до 10 млн ⁻¹	-	±20 %	0,001 MJIH	
Этил-трет-бутиловый эфир,	от 0 до 1000 млн ⁻¹	от 0 до 50 млн ⁻¹ включ.	±7,5 млн ⁻¹	-	0,1 млн ⁻¹	
ЭТБЭ (С ₆ H ₁₄ O)	от о до тооо млн	св. 50 до 1000 млн ⁻¹	-	±15 %	U,1 MJIH	
Этилбензол (С ₈ Н ₁₀)	от 0 до 1000 млн ⁻¹	от 0 до 20 млн ⁻¹ включ.	±3 млн ⁻¹	-	0,1 млн ⁻¹	
Этилоензол (С8П10)	от о до тооо млн	св. 20 до 1000 млн ⁻¹	-	±15 %	U,1 MJIH	
Оксид этилена (С2Н4О)	от 0 до 10 млн ⁻¹	от 0 до 1 млн ⁻¹ включ.	$\pm 0,15$ млн ⁻¹	-	0.001 мж-1	
Оксид этилена (С2Н4О)	от 0 до 10 млн	св. 1 до 10 млн ⁻¹	-	±15 %	$0,001 \; \mathrm{млн^{\text{-}1}}$	
Гексан (C ₆ H ₁₄)	от 0 до 1000 млн ⁻¹	от 0 до 100 млн ⁻¹ включ.	±20 млн ⁻¹	-	0,1 млн ⁻¹	
1 ekcah (C ₆ 11 ₁ 4)		св. 100 до 1000 млн ⁻¹	-	20 %		
Сероводород (Н2S)	от 0 до 50 млн ⁻¹	от 0 до 10 млн ⁻¹ включ.	±1,5 млн ⁻¹	-	0,01 млн ⁻¹	
Сероводород (1123)		св. 10 до 50 млн ⁻¹	-	±15 %	U,U1 MJIH	
Изобутан (i-C ₄ H ₁₀)	от 0 до 1000 млн ⁻¹	от 0 до 200 млн ⁻¹ включ.	±30 млн ⁻¹	-	0,1 млн ⁻¹	
изобутан (1-С411 ₁₀)	01 0 до 1000 млн	св. 200 до 1000 млн ⁻¹	-	±15 %	O,1 MJIH	
Изобутанол (і-С4Н9ОН)	от 0 до 50 млн ⁻¹	от 0 до 5 млн ⁻¹ включ.	±0,75 млн ⁻¹	-	0.01 xrm-1	
Изобутанол (1-С4119ОП)	от о до зо млн	св. 5 до 50 млн ⁻¹	-	±15 %	- 0,01 млн ⁻¹	
Изобутилен (і-С4Н8)	от 0 до 1000 млн ⁻¹	от 0 до 50 млн ⁻¹ включ.	±10 млн ⁻¹	-	0,1 млн ⁻¹	
изобугилен (1-С4н8)	от о до тооо млн	св. 50 до 1000 млн ⁻¹	-	±20 %	U,1 MJIH	
Изопропанол (і-С ₃ Н ₇ ОН)	от 0 до 50 млн ⁻¹	от 0 до 5 млн $^{-1}$ включ.	±1 млн ⁻¹	-	0,01 млн ⁻¹	
изопропанол (1-С3Н7ОН)		св. 5 до 50 млн ⁻¹	-	±20 %	U,U1 MJIH	
Метилацетат ($C_3H_6O_2$)	от 0 до 1000 млн ⁻¹	от 0 до 50 млн $^{-1}$ включ.	±7,5 млн ⁻¹	-	0,1 млн ⁻¹	
	от о до тооо млн	св. 50 до 1000 млн ⁻¹	_	±15 %	U,1 MJIH	

Определяемый компонент ¹⁾ Диапазон измерений определяемого компонента ²⁾		Пределы допускаемой основной погрешности		Разрешающая способность		
_	_			относительная	спосооность	
2-бутанон (МЭК) (С ₄ Н ₈ О)	от 0 до 1000 млн ⁻¹	от 0 до 100 млн ⁻¹ включ.	±15 млн ⁻¹	-	0,1 млн ⁻¹	
2-0y1ahoh (M3K) (C4H8O)	от о до тооо млн	св. 100 до 1000 млн ⁻¹	-	±15 %	U,1 MJIH	
Диметилсульфид (C ₂ H ₆ S)	от 0 до $1000\mathrm{млн^{-1}}$	от 0 до 20 млн $^{-1}$ включ.	±4 млн ⁻¹	-	0,1 млн ⁻¹	
диметилеульфид (С21163)	01 0 до 1000 млн	св. 20 до 1000 млн ⁻¹	-	±20 %	U,1 MJIH	
Метил-трет-бутиловый эфир,	от 0 до $1000\mathrm{млн^{-1}}$	от 0 до 50 млн ⁻¹ включ.	±7,5 млн ⁻¹	-	0,1 млн ⁻¹	
МТБЭ $(C_5H_{12}O)$	01 0 до 1000 млн	св. 50 до 1000 млн ⁻¹	-	±15 %	U,1 MJIH	
Нонан (С ₉ H ₂₀)	от 0 до $1000\mathrm{млн}^{\text{-}1}$	от 0 до 100 млн ⁻¹ включ.	±15 млн ⁻¹	-	$0,1{ m MJH}^{-1}$	
Понан (С91120)	от о до тооо млн	св. 100 до 1000 млн ⁻¹	-	±15 %	U,1 MJIH	
Нафталин (C ₁₀ H ₈)	от 0 до 50 млн ⁻¹	от 0 до 5 млн $^{-1}$ включ.	±1 млн ⁻¹	-	$0,\!01$ млн $^{-1}$	
Пафталин (С10118)		св. 5 до 50 млн ⁻¹	-	±20 %	U,UI MJIH	
Октан (С ₈ Н ₁₈)	от 0 до 1000 млн ⁻¹	от 0 до 100 млн ⁻¹ включ.	±15 млн ⁻¹	-	0,1 млн ⁻¹	
OK14H (C811[8)		св. 100 до 1000 млн ⁻¹	-	±15 %	U,1 MJIH	
Октен (С ₈ Н ₁₆)	от 0 до 1000 млн ⁻¹	от 0 до 100 млн ⁻¹ включ.	±15 млн ⁻¹	-	$0,1{ m MJH}^{-1}$	
OKICH (C81116)	01 0 до 1000 млн	св. 100 до 1000 млн ⁻¹	-	±15 %	U,1 MJIH	
Фенол (C ₆ H ₅ OH)	от 0 до 10 млн $^{-1}$	от 0 до 1 млн $^{-1}$ включ.	±0,02 млн ⁻¹	-	$0,\!001~{ m MJH}^{-1}$	
ΦCHO31 (C6115O11)	от о до то млн	св. 1 до 10 млн ⁻¹	-	20 %	0,001 WiJiii	
Фосфин (РН3)	от 0 до 10 млн ⁻¹	от 0 до $0,1$ млн $^{-1}$ включ.	$\pm 0,02$ млн ⁻¹	-	$0,\!001~{ m MJH}^{-1}$	
Фосфин (1113)	от о до то млн	св. 0,1 до 10 млн ⁻¹	-	±20 %	0,001 MJH	
Пропилен (С ₃ Н ₆)	от 0 до 1000 млн $^{-1}$	от 0 до 100 млн ⁻¹ включ.	±15 млн ⁻¹	-	$0,1$ млн $^{-1}$	
пропилен (С3116)	01 0 до 1000 млн	св. 100 до 1000 млн ⁻¹	-	±15 %	U,1 MJIH	
Стирол (С ₈ Н ₈)	от 0 до 50 млн ⁻¹	от 0 до 5 млн $^{-1}$ включ.	±0,75 млн ⁻¹	-	0,01 млн ⁻¹	
- , , ,	от о до зо млн	св. 5 до 50 млн ⁻¹	_	±15 %	0,01 MJIH	
Метил-трет-амиловый эфир,	от 0 до $1000{ m mm}{ m h}^{-1}$	от 0 до 50 млн $^{-1}$ включ.	±7,5 млн ⁻¹	-	$0,1$ млн $^{-1}$	
$MTA\Theta$) ($C_6H_{14}O$)	010 до 1000 млн	св. 50 до 1000 млн ⁻¹	-	±15 %	0,1 1/11/11	

Определяемый компонент ¹⁾	Диапазон измерений определяемого компонента ²⁾		Пределы допускаемой основной погрешности		Разрешающая способность	
			абсолютная	относительная	СПОСООНОСТЬ	
Тетрахлорэтилен (C ₂ Cl ₄)	от 0 до 50 млн ⁻¹	от 0 до 5 млн $^{-1}$ включ.	±1 млн ⁻¹	-	0,01 млн ⁻¹	
теграхлорэтилен (С2Сц)	от о до зо млн	св. 5 до 50 млн ⁻¹	-	±20 %	U,U1 MJIH	
Толуол (С7Н8)	от 0 до 1000 млн ⁻¹	от 0 до 50 млн ⁻¹ включ.	±7,5 млн ⁻¹	-	$0,1$ млн $^{-1}$	
1 олуол (С/118)	01 0 до 1000 млн	св. 50 до 1000 млн ⁻¹	-	±15 %	O,1 MJIH	
Трихлорэтилен (C ₂ HCl ₃)	от 0 до 50 млн ⁻¹	от 0 до 10 млн ⁻¹ включ.	±1,5 млн ⁻¹	-	$0,\!01~{ m MJH}^{-1}$	
трихлорэтилен (С211С13)	от о до зо млн	св. 10 до 50 млн ⁻¹	-	±15 %	0,01 MJH	
Винилацетат (С ₄ H ₆ O ₂)	от 0 до 50 млн ⁻¹	от 0 до 10 млн ⁻¹ включ.	±2 млн ⁻¹	-	$0,\!01~{ m MJH}^{-1}$	
Винилацетат (С4116О2)	от о до зо млн	св. 10 до 50 млн ⁻¹	-	±20 %	0,01 MJH	
м-ксилол (m-С ₈ H ₁₀)	от 0 до 1000 млн ⁻¹	от 0 до 50 млн ⁻¹ включ.	±7,5 млн ⁻¹	-	$0,1$ млн $^{-1}$	
M-RCM11011 (III-C81110)	от о до тооо млн	св. 50 до 1000 млн ⁻¹	-	±15 %	U,1 MJIH	
о-ксилол (о-С ₈ H ₁₀)	от 0 до 1000 млн ⁻¹	от 0 до 50 млн ⁻¹ включ.	±7,5 млн ⁻¹	-	$0,1$ млн $^{-1}$	
0-Refinon (0-C811 ₁₀)	от о до тооо мин	св. 50 до 1000 млн ⁻¹	-	±15 %	O,1 WIJIII	
п-ксилол (p-C ₈ H ₁₀)	от 0 до 1000 млн ⁻¹	от 0 до 50 млн ⁻¹ включ.	±7,5 млн ⁻¹	-	$0,1$ млн $^{-1}$	
п-кенлол (р-С81110)	от о до тооо мин	св. 50 до 1000 млн ⁻¹	-	±15 %	O,1 WIJIII	
Сероуглерод (CS ₂)	от 0 до 10 млн ⁻¹	от 0 до 1 млн ⁻¹ включ.	$\pm 0,15$ млн ⁻¹	-	$0{,}001~{ m MJH}^{-1}$	
сероуглерод (св2)	от о до то мын	св. 1 до 10 млн ⁻¹	-	±15 %	0,001 Wijiii	
Циклогексан (C_6H_{12})	от 0 до 1000 млн ⁻¹	от 0 до 50 млн ⁻¹ включ.	±7,5 млн ⁻¹	-	$0,1$ млн $^{-1}$	
Harriot execut (Collis)	от о до тооо млн	св. 50 до 1000 млн ⁻¹	-	±15 %	0,1 Wijiii	
Винилхлорид (C_2H_3Cl)	от 0 до 50 млн $^{-1}$	от 0 до 10 млн ⁻¹ включ. св. 10 до 50 млн ⁻¹	±1,5 млн ⁻¹	-	0,01 млн ⁻¹	
Бинилилорид (С2113С1)	12.10рид (С2113С1) 01 0 до 30 млн		-	±15 %	0,01 WIJIII	
1-бутанол (С4Н9ОН)	от 0 до 50 млн ⁻¹	от 0 до 5 млн ⁻¹ включ.	$\pm 0,75 \text{ млн}^{-1}$	-	$0,\!001~{ m MJH}^{-1}$	
1 0y1un031 (04119011)	от о до зо мын	св. 5 до 10 млн ⁻¹	-	±15 %	0,001 1111111	

Окончание таблицы 2

Определяемый компонент ¹⁾	Диапазон измерений определяемого компонента ²⁾		Определяемый компонент ¹⁾ Диапазон измерений определ		-	допускаемой погрешности	Разрешающая способность
			абсолютная	относительная	СПОСООНОСТЬ		
Пиотичномии (С. Н. М)	от 0 до 50 млн $^{-1}$	от 0 до 10 млн $^{-1}$ включ.	±1,5 млн ⁻¹	-	0,01 млн ⁻¹		
Диэтиламин ($C_4H_{11}N$)	от о до зо млн	св. 10 до 50 млн ⁻¹	-	±15 %	U,U1 MJIH		
и роитон (С. И.)	от 0 до 1000 млн ⁻¹	от 0 до 100 млн $^{-1}$ включ.	±15 млн ⁻¹	-	0,1 млн ⁻¹		
н-гептан (С ₇ Н ₁₆)	от о до тооо млн	св. 100 до 1000 млн ⁻¹	-	±15 %	O,1 MJIH		

^{1) —} Газоанализаторы с определяемыми компонентами, не приведенными в таблице, но указанными в Руководстве по эксплуатации, могут применяться в качестве индикаторов для предварительной оценки содержания компонентов. Газоанализаторы могут применяться для измерения других определяемых компонентов при наличии аттестованных методик (методов) измерений (МИ) в соответствии с ГОСТ Р 8.563-2009;

 $^{^{2)}}$ — По дополнительному заказу возможна поставка газоанализаторов отградуированных в единицах измерений массовой концентрации мг/м³. Пересчёт результатов измерений, выраженных в объёмных долях, млн⁻¹, в единицы массовой концентрации, мг/м³, осуществляется автоматически для условий 20 °C и 760 мм рт.ст.;

^{*} – Время установления показаний $T_{0,9}$, c, не более:

⁻ для модификаций Falco 1.1 – 30 секунд (без учета цикличности измерений);

⁻ для модификаций Falco 1.2 – 10 секунд (без учета периодичности измерений).

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение		
Напряжение питания постоянного тока, В, номинальное	24		
Напряжение питания постоянного тока, В, допустимое изменение:			
- Falco 1.1	от 8 до 40		
- Falco 1.2	от 12 до 40		
Потребляемая мощность, Вт, не более:			
- Falco 1.1	2,0		
- Falco 1.2	8,0		
Габаритные размеры (ширина×высота×глубина), мм, не более:			
- Falco 1.1	205×180×125		
- Falco 1.2	291×180×125		
Масса, кг, не более:			
- Falco 1.1	2,9		
- Falco 1.2	3,3		
Условия эксплуатации:			
- температура окружающей среды, °С:			
Falco 1.1	от -40 до +50		
Falco 1.2	от -20 до +50		
- относительная влажность, %	от 5 до 100		
- атмосферное давление, кПа	от 80 до 130		
Время прогрева, мин, не более	30		
Средний срок службы, лет ¹⁾	15		
Средняя наработка на отказ, ч	20000		
Маркировка взрывозащиты	1Ex d ib IIC T4 Gb		
Степень защиты IP по ГОСТ 14254-2015	IP 65		
—————————————————————————————————————			

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Полица 4 – Комплектность средства измерении	05	I/
Наименование	Обозначение	Количество
Газоанализатор Falco	в соответствии с заказом	1 шт.
Паспорт	-	1 экз.
Руководство по эксплуатации	-	1 экз. ¹⁾
Адаптер калибровочный (для Falco 1.1)	-	1 шт.
Соединительный патрубок (для Falco 1.2)	-	1 шт.
Магнитный ключ	-	1 шт.
Набор для чистки ФИД -лампы	-	1 шт.
Съемник ФИД-лампы	-	1 шт.
Фильтр насоса (для Falco 1.2)	-	1 шт.
Уплотнительное кольцо (для Falco 1.2)	-	1 шт.
Комплект для монтажа на трубу	-	1 шт. ²⁾
Комплект для монтажа в воздуховоде	-	1 шт. ²⁾
Козырек защиты от атмосферных осадков и солнца	-	1 шт. ²⁾

Наименование	Обозначение	Количество			
Заглушка кабельного ввода	-	1 шт. ²⁾			
Кабельный ввод	-	1 шт. ²⁾			
$^{}$ Один экземпляр на партию $^{2)}$ — Поставляется к газоанализатору по отдельному заказу					

Сведения о методиках (методах) измерений

приведены в разделе «Работа с FALCO» документа «Газоанализаторы Falco 1.1. Руководство по эксплуатации» и «Газоанализаторы Falco 1.2. Руководство по эксплуатации»

Нормативные и технические документы, устанавливающие требования к газоанализаторам Falco

Приказ Федерального агентства по техническому регулированию и метрологии от «31» декабря 2020 г. № 2315 «Об утверждении государственной поверочной схемы для средств измерений содержания компонентов в газовых и газоконденсатных средах».

Постановление Правительства Российской Федерации от «16» ноября 2020 г. № 1847 «Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений» (п. 4.43).

ГОСТ 13320-81 Газоанализаторы промышленные автоматические. Общие технические условия.

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.

Техническая документация фирмы-изготовителя ION Science Ltd.

Изготовитель

ION Science Ltd, Великобритания

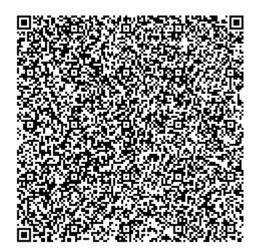
Адрес: The Hive, Butts Lane, Fowlmere, Cambridgeshire SG8 7SL

Телефон (факс): +44 (0) 1763 208503

Web-сайт: <u>www.ionscience.com</u> E-mail: <u>info@ionscience.com</u>

Испытательный центр

Общество с ограниченной ответственностью «ПРОММАШ ТЕСТ»


(OOO «ПРОММАШ TECT»)

Адрес: 119530, г. Москва, Очаковское ш., д. 34, пом. VII, комн.6

Телефон: +7 (495) 481-33-80 E-mail: info@prommashtest.ru

Регистрационный номер RA.RU.312126 в Реестре аккредитованных лиц в области

обеспечения единства измерений Росаккредитации

